
1

Towards a Structured Specification
of Coding Conventions

Elder Rodrigues Jr. and Leonardo Montecchi

Instituto de Computação
Universidade Estadual de Campinas

Campinas, SP, Brazil
elder.junior@students.ic.unicamp.br, leonardo@ic.unicamp.br

Abstract—Coding conventions are a means to improve the
reliability of software systems. They can be established for
many reasons, ranging from improving the readability of code
to avoiding the introduction of security flaws. However, coding
conventions often come in the form of textual documents in
natural language, which makes them hard to manage and to
enforce. Following model-driven engineering principles, in this
paper we propose an approach and language for specifying
coding conventions using structured models. We ran a feasibility
study, in which we applied our language for specifying 215
coding rules from two popular rulesets. The obtained results
are promising and suggest that the proposed approach is feasible.
However, they also highlight that many challenges still need to be
overcome. We conclude with an overview on the ongoing work for
generating automated checkers from such models, and we discuss
directions for an objective evaluation of the methodology.

Keywords— Coding standards, coding conventions, model-
driven engineering, domain-specific languages, static analysis.

I. INTRODUCTION

Coding conventions [22], also termed as coding standards,
are sets of guidelines for software development that rec-
ommend a certain programming style or specific practices,
or impose constraints. Depending on their purpose, coding
conventions may cover different aspects of software devel-
opment, including file organization, indentation, comments,
declarations, naming conventions, programming practices, pro-
gramming principles, architectural best practices, etc.

Besides purely “cosmetic” recommendations, the adherence
to precise coding rules is a fundamental practice for enforcing
non-functional properties like security or performance. For
example, attackers often exploit known vulnerabilities intro-
duced by poor usage of programming constructs or system
calls. Similarly, performance bottlenecks can be avoided by
preferring certain programming constructs instead of others
(e.g., see [27]). Coding conventions are not static artifacts;
rather, they evolve over time following the introduction of new
language features or the discovery of new vulnerabilities.

It has been argued that existing coding conventions — in
their current shape — offer limited benefit, because of the dif-
ficulties in actually enforcing and managing them [11]. In fact,
like many other artifacts in the development process, coding
conventions mostly come in the form of textual documents
written in natural language, possibly complemented with code
examples. Thus, they cannot be processed automatically, and
tasks like the following ones must be done manually: i)

check similarity between rules, ii) identify conflicting rules,
iii) understand if a tool is able to check a certain rule, iv)
configure a tool to check a certain rule, etc.

Following the principles behind Model-Driven Engineering
(MDE) [20], all the artifacts in the software development pro-
cess, thus including coding conventions, should be represented
as structured models, to increase the degree of automation,
improve integration, and reduce the possibility of human
mistakes. However, to the best of our knowledge, there is little
work on this topic in the literature.

In this paper we investigate the possibility of specifying cod-
ing conventions through structured, machine-readable, models.
More in details, we provide the following contributions in this
direction: i) we introduce a MDE-based approach for man-
aging coding conventions as structured specifications; ii) we
define a domain-specific language that realizes such approach
for the Java programming language; iii) we run a feasibility
study, in which we use the defined language to specify existing
coding conventions for the Java language; and iv) we discuss
our roadmap for a comprehensive evaluation of the proposed
approach.

The rest of the paper is organized as follows. In Section II
we introduce the necessary background and motivation, while
in Section III we discuss the related work. In Section IV
we present the overall approach, which is centered around a
domain-specific language for specifying coding conventions.
We define this language in Section V, by discussing its
metamodel (i.e., abstract syntax), while usage examples are
given in Section VI. The feasibility study and its results are
presented in Section VII, while a discussion of the limitations
and how we plan to overcome them is reported in Section VIII.
Finally, conclusions are drawn in Section IX.

II. BACKGROUND AND MOTIVATION

A. Coding Conventions
Frequently, even in the scientific literature and in tool manu-

als, the terms “coding convention”, “coding standard”, “coding
rules”, etc., are used interchangeably. To avoid ambiguity, we
give here a brief definition of these terms for the context of
this paper.

A (programming) language L is a subset of all the possible
strings over a certain alphabet A, that is, L ⊆ A∗. We use
the term code portion to refer to any string that is admissible
according to the language, i.e., any ω ∈ L.

2

A coding rule is a restriction on the possible ways to
program software. It states the conditions under which a code
portion ω must be considered invalid for the purpose of a
software project. More formally, a coding rule is a function
f : L → {valid, invalid}. Some rules only concern for-
matting aspects, e.g., naming of variables or placement of
brackets. Enforcing such rules does not require altering the
behavior of the software. We call this particular class of rules
coding style rules.

A coding convention is a set of coding rules, usually having
a specific purpose, e.g., improving security or performance.
Many coding conventions are created for the purpose of a
single project or company, and they never reach the public
domain. Conversely, we consider a coding convention to be a
coding standard when it is widely recognized in its reference
community, or when it is actually published as a technical
standard (e.g., MISRA C++ [14] or the JPL Java Coding
Standard [13]).

B. Limitations in Current Practice

In current practice, a wealth of coding rules exists. For
example, in the study in [23], an interview among 7 software
engineers about the most important practices for software
maintainability resulted in 71 different coding rules, and dif-
ferent opinions on their priority. Even established collections
of coding recommendations, like the SEI CERT Coding Stan-
dards [24] or the MITRE Common Weakness Enumeration
(CWE) [26], are continuously evolving, following the discov-
ery of new vulnerabilities, the introduction of new features of
programming languages, or simply changes to the agreed best
practices. For example, the latest update to CWE involved 137
new vulnerabilities and 304 major changes1.

Furthermore, many companies define their own coding
conventions, which may be different among different teams or
even for individual developers. This can happen, for example,
because of different programming languages, of different
project requirements, or simply because a certain client im-
poses its specific restrictions.

Typically, coding rules are specified using the natural lan-
guage. Sometimes they are complemented with code examples,
to demonstrate the problem being addressed and how enforcing
the rule would remove it. The author of [11], scientist at
NASA/JPL, argued that the benefit of existing coding conven-
tions is often small, even for critical applications. The main
reason for such lack of effectiveness was attributed to the
lack of comprehensive tool-based (i.e., automated) compliance
checks. Although more than ten years have passed, the practice
in the management of coding conventions has not significantly
improved. Probably, we can still say that the most evident
pattern among different coding conventions is that “each new
document tends to be longer than the one before it” [11].

While the support of automated tool has improved in recent
years (as discussed later in Section III), it can not be said that
coding standards are supported by comprehensive automated
compliance checks, except for very specific set of rules.
Tool support is fragmented: each static analysis tool checks

1https://cwe.mitre.org/data/reports/diff reports/v3.1 v3.2.html

a different set of rules, often for a specific programming
language. Verifying all the rules of a certain coding convention
needs the combined application of multiple tools, and rarely
all the rules can be automatically checked. This is especially
true when customized coding rules need to be enforced. To
complicate this scenario, it is often difficult to understand
which rules a tool is capable to check (or vice versa).

Providing a structured specification of coding standards
would open up several benefits. For example, industrial stan-
dards could include such structured specification of the im-
posed coding rules, and tool developers could expose the set
of rules that their tool is capable of checking. Most impor-
tantly, a machine-readable description of coding rules would
enable the automated generation of checkers for such rules.
Such possibility would also improve automation, for example
enabling the integration of coding standards in “continuous”
development practices [21].

We note that the problem of finding a structured way to
describe coding conventions is starting to attract attention in
the scientific literature. Starting from similar motivations, the
work in [9] defines a domain-specific language to specify
coding rules for CSS2, a simple language for web design.

III. RELATED WORK

Static analysis consists in searching source code for com-
mon defects and known bug patterns, without executing the
software itself. Several tools exist for this purpose. Among
the most popular ones, FindBugs (now SpotBugs) [12] is a
tool to find bugs in Java programs, originally created to detect
null pointer defects. It features a plugin module that can be
used to write customized detectors for additional bug patterns.
Similarly, QJ Pro [4] checks conformance to a predefined
set of formatting rules, misuses of the Java language, code
structure, etc. Unfortunately, from the available documentation
we were not able to precisely determine which rules are
supported by this tool.

Several other tools for static code analysis exist. However,
few of them support the definition of customized extensions.
PMD [3] and CheckStyle [2] are two notable exceptions.
Both of them can analyze code for compliance with either
predefined rules, or rules created by users using scripts or con-
figuration languages. A study comparing FindBugs, QJ Pro,
and PMD can be found in [29], while a more general survey
on static analysis techniques and tools can be found in [10].

For customization, both PMD and CheckStyle use a config-
uration language based on XML. However, it should be noted
that the kind of rules that can be described with such languages
is limited by the features that are actually implemented in the
tool. They also allow users to write custom checks using Java
code or XPath queries, which however produce very verbose
and complex specifications that in the end are themselves
prone to defects. In this paper, we define a generic tool-
agnostic language to specify coding conventions, from which
low-level tool-specific configurations can be derived by model
transformation.

2Cascading Style Sheets, see https://www.w3.org/Style/CSS/

https://cwe.mitre.org/data/reports/diff_reports/v3.1_v3.2.html
https://www.w3.org/Style/CSS/

3

As mentioned earlier, the authors of [9] define an approach
to provide machine-readable specifications of coding rules for
CSS. Another interesting approach has been introduced in
[5] and implemented in Naturalize, a tool based on Natural
Language Processing (NLP), which analyzes a code base to
first recognize naming and formatting conventions adopted in
the project, and then identify possible violations. However,
these approaches only address formatting and naming issues
(i.e., coding style), and there is no way to specify customized
coding rules that address security aspects, for example. The
authors of [30] focus on structuring the relations between rules
and vulnerabilities across different repositories, but they do not
provide a structured specification of the rules themselves.

Other works in the literature focused on modeling different
aspects of source code. Some of them focused on the formal-
ization of so-called code smells (e.g., [15]), which however
are only one of the reasons that drive the definition of coding
conventions. More in general, most of these works are related
to the specification of rules for the reverse engineering of
software. A survey of MDE techniques for reverse engineering
can be found in [18].

In this respect, the Knowledge Discovery Metamodel
(KDM) [17], defined by the Object Management Group
(OMG), is of particular relevance. KDM is a metamodel for
representing existing software: it considers the physical and
logical elements of software at various levels of abstraction, as
well as their relations. The primary purpose of this metamodel
is to enable a common interchange format for interoperability
between tools, as a vendor-neutral format. MoDisco (Model
Discovery) [7] provides a concrete implementation of the
metamodel, and it supports the extraction of KDM models
from software. However, the objective of KDM is to model
an entire software project in its details, while our objective is
to model coding conventions at a higher level of abstraction.

The QL language [6] is a query language that has been
mostly applied to the specification of queries on source code.
QL is considered a general-purpose query language [6], while
our objective is to define a domain-specific language for the
specification of coding conventions. Also, because it supports
arbitrary queries on source code, QL is necessarily quite
verbose, while we aim at a concise specialized language.
Finally, we are proposing a complete MDE workflow, in which
our metamodel is the basis for deriving other artifacts (see
Figure 1 later). QL queries could be an example of derived
artifacts, as discussed in the next section.

IV. THE PROPOSED APPROACH AND ITS CHALLENGES

In this section we describe the general workflow we envision
for the management of coding convention, as well as the
challenges that need to be overcome to concretely realize it.

A. The Workflow

Our workflow for the management of coding conventions
as structured, machine-readable, specifications is depicted in
Figure 1. The workflow is centered around a domain-specific
language that is used to provide such structured specifications.
We call this language the Coding Conventions Specification

Textual Coding Rules
Structured Rules

(CCSL Specification)

Platform-Specific
Information

Comparison

CheckStyle
Configuration

PMD
Configuration Natural Language

Description

QL Query

OCL Query on
KDM Model

Java Code for
Rule Verification

Configuration of
Existing Tools

Other Approaches
for Rules Verification

Other Artifacts

Figure 1: The proposed workflow for a the management of
coding conventions.

Language (CCSL). Textual version of existing coding rules
are translated into specifications in such language, while new
rules can be created directly as CCSL models.

Once the machine-readable specification of coding rules
is available, they can be analyzed, for example to identify
conflicting rules or equivalent ones. Then, from such specifi-
cations, model-transformations can be applied to automatically
derive different artifacts. We identify three classes of artifacts
that can be derived from CCSL models.

First, it is possible to derive configuration files for ex-
isting static analysis tools. As mentioned before, tools like
CheckStyle or PMD can be configured to check custom
rules. The process is however quite complex, and it requires
a deep knowledge of the tool. For example, in PMD this
is done by writing XPath queries over the Abstract Syntax
Tree (AST) extracted from the source file, or by directly
implementing a Java class that realizes the check. By defining
a model transformation algorithm it is ensured that new coding
rules that can be defined by a CCSL specification can be
automatically checked, by deriving the proper configuration
file for one of the existing tools.

Second, there may be situations in which existing static
analysis tools are not used, e.g., because no tool is actually able
to check a certain set of rules, or because of other technical or
organizational reasons. In this case, the specified coding rules
can be verified by other means, e.g. by deriving: i) source code
or scripts to perform the verification programmatically; ii) QL
queries; or iii) OCL3 queries, in case a structured model of
the software under analysis is available. This last option is
especially interesting when considering a MDE context and
the capabilities of a platform like MoDisco [7], which is able
to extract a KDM model from the source code of an existing
application.

In principle, other kinds of artifacts could be derived. For
example, an explanation of the rule in natural language, or
examples of source code portions that violate it.

Since we aim to define CCSL as a high-level language,
platform-specific information may be needed to concretely

3The Object Constraint Languge (OCL) is a query language for models,
published as an OMG standard. See https://www.omg.org/spec/OCL/.

https://www.omg.org/spec/OCL/

4

derive low-level artifacts (e.g., tool configuration) for a specific
platform. For example, consider a rule that mentions “thread-
safe methods”, as rule TSM00-J in [24]. Properly verifying
such rule requires knowledge of which methods are thread-
safe in a certain platform, or which language constructs make a
method thread-safe (e.g., the Java synchronized keyword). This
is reflected by the element “Platform-Specific Information”
in Figure 1. The simplest form of such information is a
mapping between elements of the CCSL (i.e., metaclasses) and
keywords of the target programming language or platform.

B. Main Challenges

To realize the workflow described in the previous section,
several technical and research challenges need to be overcome.
We highlight the most important ones in the following.

1) Vocabulary: The first challenge consists in the vocabu-
lary to be considered, since different programming languages
may use different terms to represent the same concept. To
minimize this problem, in this paper we focus on the Java
language only. Extension to other programming languages will
be investigated as future work.

2) Abstraction Level: A model is an abstraction of reality,
in the sense that it cannot represent all aspects of reality [8].
When trying to define a structured representation of coding
rules, we are trying to define models of such rules. Such
models are expressed in CCSL, whose abstract syntax is
defined by a metamodel. Finding the appropriate abstraction
level of the metamodel is challenging, especially because the
notion of preciseness of a model is not an absolute notion [8].

While a lower abstraction level allows more coding con-
ventions to be specified, it results in a complex and verbose
metamodel, resembling the abstract syntax of the programming
language itself, and thus going in the opposite direction with
respect to a domain-specific language. On the other hand, a
higher abstraction level simplifies the specification of coding
rules for the user, but it makes the derivation of low-level
artifacts more difficult.

3) Rules Verification: Even if a coding rule can be specified
using CCSL, this does not guarantee that it may be easily
verified using some static analysis tool or program code. In
fact, some rules may be hard or impossible to be verified using
static analysis only.

4) Ambiguity of Natural Language: Coding conventions are
normally described using the natural language. Although they
are usually accompanied with examples of complying and non-
complying code (e.g., see [24]), a certain degree of ambiguity
still remains. Even when it is possible to provide a structured
specification of the coding rule, it is challenging to determine
whether such specification really represents what the original
rule intended. This aspect is especially challenging for the
evaluation of the metamodel, as discussed later in Section VII.

V. CODING CONVENTIONS SPECIFICATION LANGUAGE

Working towards the realization of the workflow in Figure 1,
In this section we describe the metamodel of the CCSL
language, which is used to provide structured specifications
of coding rules.

Rule

negated : Boolean = false

CompositeRule

operator : LogicOperator = AND

AtomicRule

CodeElement

exact : Boolean = false

Filter

negated : Boolean = false

Element

DataType

Property

name : String

value : String

[2..*] rule

[0..*] filters

[1..1] scope

[0..*] auxiliaryElements

[0..*] properties

Figure 2: Core Package.

In this paper we decided to focus on Java since i) it is a
very popular language, widely used in the industry, and ii) it
is covered by many coding conventions. We decided however
to group the Java-specific aspects in a separate package, to
leave the metamodel open for extensions.

A. Overview

In our approach, the structured specification of a rule
specifies patterns that would violate the rule in the code. That
is, given a rule f : L → {valid, invalid}, our objective is to
give a specification of the subset of the programming language
Lf ⊆ L such that f(ω) = {invalid} ⇐⇒ ω ∈ Lf .

We identified the core concepts that need to be included
in the language by analyzing multiple sources, including:
i) existing coding conventions, in particular those for the Java
language; ii) existing query languages; iii) main concepts of
object-oriented programming; and iv) existing source code
models, in particular the aforementioned KDM.

Once the concepts have been identified, we defined the
actual metamodel of our CCSL language using the Ecore
metamodeling language, which is part of the Eclipse Modeling
Framework (EMF) [25]. The main elements of the metamodel
are described in the next sections, grouped by package. Its
complete definition is available on GitHub [19].

B. Core Package

This package contains the core concepts of the metamodel,
which are illustrated in Figure 2 in EMF notation. In our
metamodel, a coding rule is represented by the Rule metaclass,
which can be either atomic or composite.

An AtomicRule is composed of:
Scope A scope identifies the programming language element

to which the rule applies. The rule is applicable only
when the element specified by the scope actually exists
in the source code.

Filters Filters are used to select only those elements that fulfill
specific conditions. Filter is an abstract metaclass, and it
is extended by several concrete filters. A filter can be
negated, which means that only elements not fulfilling
the filter are selected.

Complex rules can be specified as a CompositeRule, which
is essentially a connector to combine multiple rules using
Boolean logic operators (and, or, if-then, etc).

As an example consider a simple rule for Java that forbids
any public field except constants. In this case, the scope is

5

any field that has the “public” property, while a filter would
be applied to exclude those fields that also have the “static”
and “final” properties (i.e., constants).

Sometimes it is necessary to include information that is
related to the scope but that is not actually part of the scope,
for example the return type of a method. For this reason, every
rule may contain a set of elements (auxiliaryElements).

Figure 2 also illustrates the Element metaclass, which is
the top metaclass in the hierarchy. Currently, the metamodel
considers two kinds of elements: DataType and CodeElement.
The DataType represents a datatype (e.g., a primitive type) of
the programming language. On the other hand, the CodeEle-
ment metaclass represents an element of the source code being
analyzed (i.e., variables, methods, invocations, etc.). As the
Ecore language supports multiple inheritance a metaclass can
be subclass of both CodeElement and DataType.

Each CodeElement has a set of Property. The Property
metaclass represents a generic property of the element, char-
acterized by its name and possibly a value. In this context,
with the term “property” we mean characteristics that source
code elements may exhibit (e.g., modifiers of a class).

As an example, consider a variable declared as private and
final in the Java language. In our metamodel it would be
represented as an instance of the Variable metaclass, with two
instances of the Property metaclass with their “name” attribute
set as “private” and “final”, respectively.

C. NamedElements Package

A NamedElement is a CodeElement that can be identified
by its name. We distinguish four kinds of NamedElement:
i) ComplexType, which represents a custom datatype, e.g., a
Class (ComplexType is also a subclass of DataType, which
was omitted from the diagram for simplicity) ii) Variable,
iii) Method, and iv) Namespace.

The NamedElement hierarchy is illustrated in Figure 3. Due
to space limitations the full hierarchy was omitted; full details
of the metamodel are available on GitHub [19].

CodeElement

exact : Boolean = false

 properties : Property

NamedElement

name : String

ComplexType Variable

 type : DataType

Method

returnType : DataType

Namespace

[0..*] superTypes [0..*] fields

[0..*] methods

[0..*] groupedElements

[0..*] params

Figure 3: NamedElements Package.

D. Statements Package

The next key concept in the metamodel is the Statement
metaclass and its hierarchy, as illustrated in Figure 4. The full
hierarchy was omitted due to space limitations; full details of
the metamodel are available at [19].

A Statement represents a command to be executed. The
metamodel supports the following kinds of statements as
specializations of the Statement metaclass.

Statement

CodeElement

exact : Boolean = false

properties : Property

Access

/elementAccessed : NamedElement

LiteralValue

value : String

ControlFlow

VarAssignment

variable : Variable
MethodInvocation

Block
VariableAccessComplexTypeAccess

VarDeclaration

 variable : Variable

[0..1] from

[0..1] condition [0..*] assignment

[0..*] args

[0..*] statements

[0..*] assignment

Figure 4: Statements Package

Filter

negated : Boolean = false

AtomicFilter

targets : Element

CompositeFilter

operator : LogicOperator = AND

PropertyFilter

properties : Property

TemplateFilter

 template : Element

DefinesMethodFilter

 methods : Method

[1..*] filters

Figure 5: Filters Package

The Access statement represents the access to the reference
of a variable, ComplexType, or method. A Block represents a
block (sequence) of statements, while ControlFlow represents
a control flow construct like the if-then and while statements.

Finally, Expression and LiteralValue represent an expression
and a literal value, respectively, while VarDeclaration and
VarAssignment represent variable declaration and assignment,
respectively.

E. Filters Package
The Filter metaclass represents filters that are used to iden-

tify specific elements within the scope given by the element
attribute of the Rule (see Figure 2).

The structure of a filter is depicted in Figure 5. To improve
flexibility, filters adopt the main idea of the Composite design
pattern, where the CompositeFilter represents a list of filters
combined by a logic operator (and, if-then, etc.), and Atomic-
Filter is an abstract metaclass which represents an entry-point
to define new filters. Every filter can also be negated or not.

Every AtomicFilter contains a list of elements to which
the filter will be applied (target attribute). Concrete filters for
different purposes are created by extending the AtomicFilter
abstract metaclass (see Figure 5). For the sake of brevity we
describe here only the following three filters, which will be
used in the rest of the paper:

1) PropertyFilter. It is used to filter an element according
to its properties. That is, it checks whether an element
contains a certain list of properties.

2) DefinesMethodFilter. It filters a ComplexType according
to the methods that it defines. An element is selected
by the filter if the specified methods are defined in the
ComplexType element or in one of its ancestors (i.e., super
types).

3) TemplateFilter. This filters checks if the target element
can be matched to the provided template, which is

6

another instance of the Element metaclass. This is the
most generic filter and it was designed to improve the
flexibility of the metamodel. In fact, in case none of
the available filters can be used to explicitly specify
the desired condition, the TemplateFilter can be used to
provide a “sample” instance of an Element that describes
the kind of elements that should be selected.

Examples of application of filters are presented later in Sec-
tion VI.

F. Java Package

We decided to keep the organization of the CCSL meta-
model generic, to facilitate its extension in the future. For this
reason, we separate elements that represent specific aspects of
the Java language in this package (Figure 6).

For example, the generic ComplexType metaclass does not
support that classes can be nested (inner classes) and that
classes can implement interfaces. Specialized metaclasses have
been added, as extensions of the ComplexType metaclass.
Similarly, the Method metaclass has been extended to represent
that in Java methods can throw exceptions.

JavaInterface

 properties : Property

JavaMethod

 properties : Property

ComplexType

 properties : Property

 fields : Variable

Method

properties : Property

params : Variable

returnType : DataType

JavaClass

 properties : Property

[0..*] methods

[0..*] throws

[0..*] nestedClasses

[0..*] implements

Figure 6: Java Package.

VI. CCSL USAGE EXAMPLE

To better explain how CCSL is actually used, in the fol-
lowing we provide concrete examples of application of the
metamodel. A broader study has been executed and it is
reported in Section VII.

The metamodel presented above defines the abstract syntax
of CCSL. For practical reasons, we use a textual concrete
syntax, which has several advantages [28], including easier
interaction with version control systems. In particular, we
present our examples using a syntax based on the Human-
Usable Textual Notation (HUTN) [16], an OMG standard for
storing models in a human-understandable format.

We have separated this section in two subsections. The
first introduces the basic idea behind the CCSL using toy
examples, while the second demonstrates its real application
to the specification of a real rule of the SEI CERT Coding
Standard [24].

A. Writing a CCSL Specification

As previously mentioned, the main part of a rule is its scope,
which identifies the kind of elements to which it applies.
It should be noted that, while an Element may in general
have many different attributes, most of them have a minimum

multiplicity of zero. This means that only the attributes that
are needed for expressing the rule need to be specified, and
all the other may be ignored.

As an example, consider the specification illustrated in
Figure 7. In this example a code portion is considered invalid
if it contains a ComplexType named as “Foo” that define a
method named as “bar”. Applying this rule to a Java source
code means that any class or interface with the name set to
“Foo” and that defines a method named as “bar” would not
be allowed. It is worth noting that this specification applies to
any ComplexType that define bar method and not only those
that contains the bar method only.

1 AtomicRule {
2 scope: ComplexType {
3 name: "Foo"
4 methods: [Method {
5 name: "bar"
6 }]
7 }
8 }

Figure 7: Basic example of a CCSL specification.

B. MET09-J Rule

Once the basic concepts about CCSL have been introduced,
consider now rule MET09-J of the SEI CERT Coding Standard
for Java [24]:

“MET09-J: Classes that define an equals() method must
also define a hashCode() method. [. . .] The equals() method
is used to determine logical equivalence between object in-
stances. Consequently, the hashCode() method must return the
same value for all equivalent objects. Failure to follow this
contract is a common source of defects.”

The part in bold is the actual title of the rule, while the rest
of the text is its explanation. Note that, in general, determining
if the hashCode method actually returns the same value for all
equivalent objects is not feasible with static analysis, and it is
in general a hard problem. Therefore, we do not include it in
the specification of the rule.

Figure 8a illustrates the specification of the above rule using
CCSL. Since the rule is not composed of sub-rules, it is only
necessary to create an instance of the AtomicRule metaclass
(line 1). The element to be searched, which defines the scope
of the rule, is a JavaClass that contains a method named
“equals” (lines 2–6). However, only classes that define an
“equals” method and do not define a “hashCode” method must
be matched. This can be achieved by applying a filter: the
TemplateFilter (lines 7–17) receives as target the JavaClass
referenced by letter “c” and checks whether it is not possible
(it is negated, line 8) to match it against the template (a
JavaClass that contains the “hashCode” method, lines 10–16).

Rule MET09-J is also a good example of how rules defined
in natural language may be ambiguous and thus be interpreted
in different ways. There are at least two aspects of this rule
that are ambiguous:

1) It is not clear which signatures of the equals method and
hashCode method that are affected by the rule. In fact,
it is possible to define multiple methods having the same

7

name, using polymorphism. The traditional signature of
the equals method in Java is boolean equals(Object obj).
However, it is possible to overload the equals method by
defining a slight variation: boolean equals(CustomClass
obj). Whether the rule MET09-J should apply only to the
original equals method or not is open to interpretation.
Furthermore, note that the original (verbatim) text of the
rule actually mentions the “equals()” method, i.e., one
without parameters.

2) The hashCode method could have been defined in a
superclass rather than in the same class that defines the
equals method. This would also prevent introducing the
bug mentioned by the rule. However, by looking at the
text it is not clear whether such implementation should
raise a warning or not.

Figure 8b illustrates an alternative specification of the
MET09-J rule, which considers the following interpretation. If
a certain class defines a boolean equals(Object obj) method,
then the int hashCode() method should be provided in that
class or in one of its superclasses, except for the Object class.

In order to reference primitive types and the Object class
it is necessary to create instances of the PrimitiveType and
the JavaClass metaclasses in the auxiliaryElements of the rule
(lines 2–10). The scope of the rule is still a JavaClass, but now
the equals method is specified as a method which returns a
boolean and contains exactly one parameter of type Object
(lines 12–17). Finally, the filter being applied in the scope is
the DefinesMethodFilter (see Section V-E). Such a filter will
search for a implementation of the hashCode method for all the
hierarchy (except for Object class) of the given class (lines 19–
28). Note that the specification of the hashCode method has
the attribute exact set to true (line 23). This means that only
implementations of hashCode method that contains exactly
zero parameters will be considered.

In this case, whether specification (a) or (b) is the correct
one is debatable. This however highlights the importance
of providing a structured semi-formal specification, to avoid
ambiguities of this kind.

VII. FEASIBILITY STUDY

In this section we report on a feasibility study we performed
as initial evaluation of the proposed approach. The objective of
this study was to understand i) whether the proposed approach
is feasible, and ii) to what extent the current version of the
metamodel is able to specify existing coding rules.

A. Study Description

To run the study we selected rules from two popular coding
conventions for the Java language. Each rule in the selected
subsets was manually analyzed, and a specification using
CCSL was attempted.

Recalling the definition given in Section II, a coding rule
is a function f : L → {valid, invalid}. Therefore, being
able to provide a specification of a certain rule f means that
the specification correctly identifies a subset of the language
Lf ⊆ L such that f(ω) = {invalid} ⇐⇒ ω ∈ Lf . That is,
being able to provide a CCSL specification that identifies all

1 AtomicRule {
2 scope: c as JavaClass {
3 methods: [Method {
4 name: "equals"
5 }]
6 },
7 filters: [TemplateFilter{
8 negated: true,
9 targets: [c],

10 template: JavaClass {
11 methods: [Method {
12 name: "hashCode"
13 }]
14 }
15 }]
16 }

(a) Initial specification.

1 AtomicRule {
2 auxiliaryElements:[
3 boolean as PrimitiveType{name: "boolean"},
4 int as PrimitiveType{name: "int"},
5 objClass as JavaClass {
6 name: "java.lang.Object"
7 }
8]
9 scope: c as JavaClass {

10 methods: [Method {
11 exact: true,
12 name: "equals",
13 returnType: boolean,
14 params: [Variable {type: objClass}]
15 }]
16 },
17 filters: [DefinesMethod{
18 negated: true,
19 targets: [c],
20 methods: [Method {
21 exact: true,
22 name: "hashCode",
23 returnType: int,
24 params: []
25 }]
26 }]
27 }

(b) Alternative specification considering that “hashCode” may be
implemented by ancestors.

Figure 8: Two possible CCSL specification of rule MET09-J
from SEI CERT [24].

(and only) the possible source code portions that violate the
rule.

Whether a correct specification can be provided or not is
somehow subjective, as it depends on the skill of the modeler,
and on the interpretation of the original rule written in the
natural language (see Section IV-B).

To decide if a rule was correctly specified we used the
following two heuristics:
• Have all the concepts mentioned in the original rule been

included in the CCSL specification?
• Does the CCSL specification contain enough information

to verify the rule automatically?
Otherwise, we consider that we were not able to provide a
specification of the rule using our language.

B. Selected Coding Rules

For this evaluation we selected two popular but quite differ-
ent set of rules: one is derived from checks implemented in a
static analysis tool, while the other contains general principles

8

Table I: Number of individual rules that were successfully
specified using CCSL (Specified/Yes column), and those for
which a specification was not possible (Specified/No column).

Source Section Specified TotalYes No

PMD
Error Prone 73 (75%) 24 (25%) 97
Multithreading 8 (80%) 2 (20%) 10
Performance 24 (80%) 6 (20%) 30
SubTotal 105 (77%) 32 (23%) 137

Characters and Strings 0 5 (100%) 5
Declarations and Initialization 0 3 (100%) 3
Exceptional Behavior 4 (40%) 6 (60%) 10
Expressions 1 (17%) 5 (83%) 6

SEI Methods 7 (54%) 6 (46%) 13
CERT Numeric Types and Operations 3 (25%) 9 (75%) 12

Object Orientation 5 (42%) 7 (58%) 12
Thread APIs 5 (83%) 1 (17%) 6
Thread Pools 0 5 (100%) 5
Visibility and Atomicity 0 6 (100%) 6
SubTotal 25 (32%) 53 (68%) 78

Total 130 (60%) 85 (40%) 215

for improving security, for which a checker is not necessarily
available.

1) PMD Rules: The PMD tool [3] mentioned before is
a static code analyzer that provides a wide set of prede-
fined coding rules, organized according to different topics.
We selected three groups of rules for our evaluation: Error
Prone, Multithreading, and Performance. All of these rules
are described with natural language, and then implemented in
the tool by means of an XPath query or by explicitly coding a
Java method that performs the check. Due to the characteristics
of the tool, it is not possible to implement rules spanning
the whole source tree, or rules requiring complex analysis.
Therefore, coding rules contained in this set are in general
relatively simple.

2) SEI CERT Coding Conventions: The Software Engineer-
ing Institute (SEI) of Carnegie Mellon University maintains
extensive coding conventions focused on security, for popular
languages such as Java and C++ [24]. Rules in this collection
are harder to model, as they address different aspects of
programming, and their descriptions span different levels of
detail. For example, some rules go into the details of the
unpacking of compressed files (IDS04-J), while other ones
simply give the generic recommendation to “perform proper
cleanup at program termination” (FIO14-J).

We based our feasibility study on the version for Java of
such rules. The “SEI CERT Oracle Coding Conventions for
Java” are organized in different subsets (e.g., Expressions,
Methods, etc.). We excluded some subsets from our evalua-
tions, as they are clearly outside the scope of the metamodel,
for example the Runtime Environment subset, which includes
recommendations for the configuration of the runtime platform
(e.g., ENV04-J: “Do not disable bytecode verification”). The
selected subsets are listed in Table I.

C. Results

During the experiment we analyzed a total of 215 individual
coding rules. That is, we tried to devise the CCSL specification

of 215 different rules, similarly to what was done for the
MET09-J rule in Section VI-B. Results of the analysis are
reported in Table I. The CCSL specifications given for the
analyzed rules are also available on GitHub [19].

We believe that the results confirm the feasibility of the
approach, as we were able to specify more than half (60%) of
the considered rules. However, they also highlight limitations
of the current version of the language, and they indicate that
the kind of rules that is considered has a great impact on the
chance of a successful specification.

In fact, we were able to specify most of the rules provided
by PMD (77%) using our approach. This was somehow
expected, as such rules have already an implementation that
is capable of checking them, meaning, at least, that their
verification can be automated. It should be noted however
that with PMD a new checker must be manually written for
each new rule and that some checkers are just Java code, i.e.,
they do not have a high-level specification. Rules provided
by PMD for which it was not possible yet to provide a
specification (23%) are due to the lack of specific primitives
in the current version of the metamodel. For example, the
analysis highlighted that more complex concepts related to
the execution flow are needed.

Conversely, we can provide a CCSL specification only for
a small portion of the rules in the SEI CERT group. Most of
those rules are in fact either too generic or so specific that
it would be necessary to develop specific checkers to verify
them. Increasing the abstraction level of the metamodel may
improve these results, although this may make the generation
of artifacts from the metamodel harder. At the same time, we
highlight that for many of the SEI CERT rules no automated
checker is available anyways. Considering this aspect, being
able to provide a structured, machine-readable, specification
of almost one third of them as a first attempt is still an
encouraging result.

Finally, it should be noted that those results represent a
feasibility study based on the current status of our work.
Refinements of the metamodel may support the specification
of some rules that have not been specified. The construction
of MDE frameworks is recognized to be an iterative process,
in which the first step is building a deep understanding of a
small part of the reference domain [28]. A deeper discussion
on our plans for a comprehensive evaluation of the proposed
approach are reported in the next section.

VIII. DISCUSSION AND NEXT STEPS

A. Threats to Validity

As initial investigation on this topic, the work presented
in this paper is subject to some threats to validity, mainly
originating from the challenges described in Section IV-B. We
discuss here the most important ones, together with our plans
for mitigating them.

1) Internal Validity: The most important threat concerning
internal validity is the correlation existing between the defini-
tion of the metamodel and its application for the specification
of coding rules. In fact, both activities were performed by
the same persons. The second threat is the subjectiveness

9

in judging whether a certain CCSL specification correctly
represents the original rule written in natural language. As
discussed in Section IV-B this threat is difficult to mitigate,
given the ambiguity of the natural language.

A possible way to mitigate this problem is to perform an
extensive evaluation with experts, or in general with external
participants. Two kinds of evaluation can be performed: i)
provide them with CCSL specifications and ask them to assess
whether the specifications correctly represent the correspond-
ing textual rule, or ii) provide them with a set of textual rules
and ask them to devise an equivalent CCSL specification. The
second experiment would be ideal, but it is considerably more
difficult to realize, because of the high demands posed on the
participants, in terms of required time and skills.

A more systematic way to mitigate the subjectiveness prob-
lems is to actually generate checkers from the modeled rules,
run them on real source code, and then compare the results
with those obtained with existing static analysis tools. A path
to the realization of this evaluation is discussed in the next
section.

2) External Validity: The workflow presented in this paper
(Figure 1) is intended to be applicable for expressing coding
conventions for multiple programming languages. However, in
this paper we defined a domain-specific language (CCSL) that
is limited to the Java language. This was in part mitigated by
selecting two popular and comprehensive coding standards,
whose rules address different aspects of programming. Inves-
tigating whether the generalization of the approach to other
programming languages is feasible is part of our future work.

B. Transformations

A systematic way to mitigate the threats discussed before is
to implement transformations that generate automated check-
ers for CCSL rules. This would allow us to ask more objective
questions for deciding whether a rule has been specified
correctly or not, e.g.:

1) Was it possible to derive automated checkers from the
CCSL specification?

2) Does the checker derived from the CCSL specification
provide the same results as existing tools that implement
the same rule? If not, is it more accurate or less accurate?

We provide here a concrete overview of the approach we
are adopting to implement the generation of such checkers.
The main approach is illustrated in Figure 9 and consists of
two steps: i) extraction of a structured model of the application
from the Java source code (this can be done by the MoDisco
tool [7]); and ii) generation of OCL queries from CCSL
specifications, to be applied on such models of the application.

As an example, consider the previous mentioned MET09-
J rule (see Section VI-B). When executing the transforma-
tions with MET09-J rule as input, the OCL query illustrated
in Figure 10 is generated automatically by a model-to-text
transformation. The general structure of the transformation,
and of the generated OCL, can be summarized in three steps:

1) Identification of the scope. Here it is identified which
metaclasses from the structured Java metamodel can
represent the scope metaclass from CCSL specification.

Figure 9: The workflow for the automated verification of
rules specified with CCSL. OCL queries are automatically
generated, and then applied to a structured model of the Java
application.

Once the target metaclasses have been identified, the
skeleton of an OCL query to select all the instantiations
that meet the specification of the given scope is generated
(line 1). For example, in the MET09-J rule the target
metaclass from Java metamodel is the ClassDeclaration
metaclass.

2) Scope conditions. In this stage all the OCL constraints for
all the conditions that must be satisfied by the scope are
generated. When processing the specification of MET09-J
rule, this step generates a set of conditions where only
Java classes that have an equals method are selected (lines
3–28).

3) Filters conditions. In this stage the transformation gen-
erates all the OCL constraints for all the filters that are
specified in the CCSL rule. When processing the speci-
fication of MET09-J rule, the transformation generates a
condition where only Java classes that do not contain a
hashCode method are selected (lines 29–46).

We have implemented the transformation using Acceleo
[1]. The source code that implements the currently available
transformations, as well as the metamodel are avaliable in the
GitHub repository [19].

IX. CONCLUDING REMARKS

In this paper we proposed an approach to provide structured
specifications of coding conventions, by applying model-
driven engineering techniques. To the best of our knowledge,
there is little work in such direction. We defined a language,
CCSL, that can be used to specify coding rules in a structured
way, and we applied it to two large sets of existing coding
conventions.

We analyzed a total of 215 individual rules from these two
coding conventions, with the objective to understand to what
extent they could be specified using the proposed approach.
Results are promising, but also show that the focus of rules and
the way they are written have a fundamental impact. Overall, it
was possible to represent 60% of the considered coding rules,
which can be considered satisfactory for a first investigation.

We discussed the limitations of the study, and how they
can be mitigated. In particular, we outlined the approach that
we are using to implement a comprehensive transformation
algorithm that generates OCL queries for Java models from
CCSL specifications. Once the complete transformation will

10

1 -- Identification of the scope
2 ClassDeclaration.allInstances()→select(c1 |
3 -- Scope Conditions
4 c1.bodyDeclarations→exists(m2 |
5 m2.oclIsKindOf(MethodDeclaration) and m2.oclAsType(MethodDeclaration).name = ’equals’ and
6 m2.oclAsType(MethodDeclaration).returnType.type.name = ’boolean’ and
7 m2.oclAsType(MethodDeclaration).parameters→exists(v3 | v3.type.type.oclAsSet()→exists(c4 |
8 c4.oclIsKindOf(ClassDeclaration) and
9 c4.oclAsType(ClassDeclaration).package→asOrderedSet()→closure(package)→reverse()→iterate(

10 p: Package; fullName: String = ’’ | fullName.concat(p.name).concat(’.’)
11).concat(c4.oclAsType(ClassDeclaration).name) = ’java.lang.Object’ and
12 m2.oclAsType(MethodDeclaration).parameters→size() = 1 and
13 -- Filter Conditions
14 not (
15 let c1InheritanceClasses: Set(ClassDeclaration) = c1→closure(c: ClassDeclaration |
16 if(not c.superClass.oclIsUndefined()) then c.superClass.type else Set(ClassDeclaration){} endif
17) in c1InheritanceClasses→exists(c: ClassDeclaration | c.bodyDeclarations→exists(m5 |
18 m5.oclIsKindOf(MethodDeclaration) and m5.oclAsType(MethodDeclaration).name = ’hashCode’ and
19 m5.oclAsType(MethodDeclaration).returnType.type.name = ’int’ and
20 m5.oclAsType(MethodDeclaration).parameters→size() = 0
21)))
22))))

Figure 10: OCL query corresponding to the CCSL specification of Figure 8b, generated by automated transformation.

be available, it will be possible to compare the results of our
framework with one of the existing static analysis tools and
thus perform a more objective evaluation.

As future work, we will work on refining and extending
the metamodel, aiming to cover a wider range of rules.
Another interesting direction we plan to investigate is to derive
guidelines for the definition of coding conventions, that is,
understanding which characteristics make them suitable for a
structured specification and automated verification.

ACKNOWLEDGMENT

This work has been supported by the São Paulo Research
Foundation (FAPESP) with grant #2018/11129-8. This work
has been developed in the context of the H2020-MSCA-RISE-
2018 “ADVANCE” project (grant 823788).

REFERENCES

[1] Acceleo. https://www.eclipse.org/acceleo/, (Accessed October 24, 2019)
[2] CheckStyle, http://checkstyle.sourceforge.net/ (Accessed October 24,

2019)
[3] PMD, https://pmd.github.io/ (Accessed October 24, 2019)
[4] QJ Pro, http://qjpro.sourceforge.net/ (Accessed October 24, 2019)
[5] Allamanis, M., Barr, E.T., Bird, C., Sutton, C.: Learning natural coding

conventions. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. pp. 281–293.
ACM (2014)

[6] Avgustinov, P., de Moor, O., Jones, M.P., Schäfer, M.: QL: Object-
oriented Queries on Relational Data. In: 30th European Conference on
Object-Oriented Programming (ECOOP 2016). vol. 56, pp. 2:1–2:25.
Dagstuhl, Germany (2016)

[7] Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: a generic
and extensible framework for model driven reverse engineering. In: Pro-
ceedings of the 25th IEEE/ACM International Conference on Automated
Software Engineering (ASE’10). pp. 173–174 (2010)

[8] Bézivin, J.: On the unification power of models. Software and Systems
Modeling (4), 171–188 (2005)

[9] Goncharenko, B., Zaytsev, V.: Language design and implementation for
the domain of coding conventions. In: Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering
(SLE 2016). pp. 90–104 (2016)

[10] Gosain, A., Sharma, G.: Static analysis: A survey of techniques and
tools. In: Intelligent Computing and Applications. pp. 581–591 (2015)

[11] Holzmann, G.J.: The power of 10: rules for developing safety-critical
code. IEEE Computer 39(6), 95–99 (2006)

[12] Hovemeyer, D., Pugh, W.: Finding bugs is easy. ACM SIGPLAN Notices
39(12), 92–106 (December 2004)

[13] Jet Propulsion Laboratory (JPL): JPL Java Coding Standard – JPL
Institutional Coding Standard for the Java Programming Language.
Version 1.0 (March 2014)

[14] MIRA Limited: Guidelines for the use of the C++ language in critical
systems. MISRA-C++:2008 (June 2008)

[15] Moha, N., Gueheneuc, Y.G., Duchien, L., Le Meur, A.F.: DECOR: A
Method for the Specification and Detection of Code and Design Smells.
IEEE Transactions on Software Engineering 36(1), 20–36 (2010)

[16] Object Management Group: Human-Usable Textual Notation (HUTN)
Specification. Version 1.0, formal/04-08-01 (August 2004)

[17] Object Management Group: Architecture-Driven Modernization: Knowl-
edge Discovery Meta-Model (KDM). Version 1.4, formal/16-09-01
(September 2016)

[18] Raibulet, C., Fontana, F.A., Zanoni, M.: Model-driven reverse engineer-
ing approaches: A systematic literature review. IEEE Access 5, 14516–
14542 (2017)

[19] Rodrigues Jr., E., Montecchi, L.: CCSL Metamodel, https://github.com/
Elderjr/Coding-Conventions-Specification-Language (Accessed October
24, 2019)

[20] Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering.
IEEE Computer 39(2), 25–31 (2006)

[21] Shahin, M., Ali Babar, M., Zhu, L.: Continuous integration, delivery
and deployment: A systematic review on approaches, tools, challenges
and practices. IEEE Access 5, 3909–3943 (2017)

[22] Smit, M., Gergel, B., Hoover, H.J., Stroulia, E.: Code convention adher-
ence in evolving software. In: 2011 27th IEEE International Conference
on Software Maintenance (ICSM). pp. 504–507 (2011)

[23] Smit, M., Gergel, B., Hoover, H.J., Stroulia, E.: Maintainability and
source code conventions: An analysis of open source projects. Tech.
Rep. TR11-06, University of Alberta, Department of Computing Science
(June 2011)

[24] Software Engineering Institute – Carnegie Mellon University: SEI CERT
Coding Standard, https://wiki.sei.cmu.edu/confluence/display/seccode/
SEI+CERT+Coding+Standards/ (Accessed October 24, 2019)

[25] Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse
Modeling Framework (2nd Edition). Addison-Wesley Professional (De-
cember 2008)

[26] The MITRE Corporation: Common Weakness Enumeration (CWE).
https://cwe.mitre.org/ (2019)

[27] Tian, Y.H.: String concatenation optimization on java bytecode. In:
Proceedings of the International Conference on Software Engineering
Research and Practice, SERP 2006, Volume 2. pp. 945–951. Las Vegas,
Nevada, USA (2006)

[28] Voelter, M.: Best Practices for DSLs and Model-Driven Development.
Journal of Object Technology 8(6) (2009)

[29] Wagner, S., Jürjens, J., Koller, C., Trischberger, P.: Comparing bug
finding tools with reviews and tests. In: IFIP International Conference
on Testing of Communicating Systems. pp. 40–55 (2005)

[30] Wu, Y., Gandhi, R.A., Siy, H.: Using semantic templates to study
vulnerabilities recorded in large software repositories. In: Proceedings of
the 2010 ICSE Workshop on Software Engineering for Secure Systems
(SESS 2010). pp. 22–28. ACM, Cape Town, South Africa (2010)

https://www.eclipse.org/acceleo/
http://checkstyle.sourceforge.net/
https://pmd.github.io/
http://qjpro.sourceforge.net/
https://github.com/Elderjr/Coding-Conventions-Specification-Language
https://github.com/Elderjr/Coding-Conventions-Specification-Language
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards/
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards/
https://cwe.mitre.org/

	Introduction
	Background and Motivation
	Coding Conventions
	Limitations in Current Practice

	Related Work
	The Proposed Approach and its Challenges
	The Workflow
	Main Challenges
	Vocabulary
	Abstraction Level
	Rules Verification
	Ambiguity of Natural Language

	Coding Conventions Specification Language
	Overview
	Core Package
	NamedElements Package
	Statements Package
	Filters Package
	Java Package

	CCSL Usage Example
	Writing a CCSL Specification
	MET09-J Rule

	Feasibility Study
	Study Description
	Selected Coding Rules
	PMD Rules
	SEI CERT Coding Conventions

	Results

	Discussion and Next Steps
	Threats to Validity
	Internal Validity
	External Validity

	Transformations

	Concluding Remarks
	References

