
Characterizing and Injecting Faults in Executable
Models Specified with fUML

Guilherme W. Lopes
Institute of Computing

Universidade Estadual de Campinas
Campinas, SP, Brazil

g230253@dac.unicamp.br

Leonardo Montecchi
Institute of Computing

Universidade Estadual de Campinas
Campinas, SP, Brazil

leonardo@ic.unicamp.br

Abstract—Fault Injection (FI) is a well-known system verifica-
tion technique, in which faults are artificially introduced into
a system, to assess its behavior in exceptional conditions. FI
can be applied at different levels, including physical, hardware
and software. FI has also been applied at model level, although
the amount of work in this direction is limited. However, the
importance of models in the development of complex systems
is growing, pushing towards model-level verification and sim-
ulations. The Foundational UML (fUML) is a specific subset
of UML, released as an OMG standard, that has a precise
execution semantics and can therefore be executed. In this
paper we investigate the application of FI to executable models
specified with fUML. We first characterize the kind of fault
that may be applied to fUML models, and then we realize an
injection mechanisms based on automated model transformation.
We apply the methodology to a simple example in the space
domain, adapted from a real satellite system. We believe this
is an important first step for the adoption of FI techniques on
fUML models, for an early detection of design flaws. We conclude
discussing some challenges and directions for future work.

Index Terms—fault injection, fUML, executable models, model-
driven, fault model

I. INTRODUCTION

Fault Injection (FI) [1] is a well-known technique for the
assurance of critical systems. In complex systems, incorrect
behavior may be caused by very specific conditions that are
difficult to reproduce in the assessment phase. The idea of FI is
to artificially introduce (inject) faults into the system, in order
to assess the effectiveness of implemented countermeasures.

In this perspective, FI is a way to accelerate the occur-
rence of faults during the verification process of a system
[2]. Different FI techniques have been used for different
purposes, including validation of fault tolerance mechanisms
implemented in specific systems, dependability benchmarking
of different systems, and fault forecasting [3].

FI can be applied at different levels, including physical,
hardware, and software. Some works have also applied FI at
model level, although the amount of work in this direction is
limited. On the other hand, the importance of models in the
development of complex systems is growing. In the Cyber-
Physical Systems (CPS) domain, the digital twins [4] trend
clearly pushes towards increased importance of model-level
verification and simulations.

Model-Driven Engineering (MDE) [5] has contributed to
the integration between modeling and subsequent develop-
ment phases, through formalization of models, automation of
derivation tasks and constraint-checking mechanisms. MDE
was one of the driving forces behind the advent of executable
models, that is, models that can be executed like real source
code. In particular, the Foundational UML (fUML) is a specific
subset of UML having a precise execution semantics and can
therefore be executed. fUML has been released as a standard
by the Object Management Group (OMG) in 2011 [6].

In this paper we investigate the application of FI to ex-
ecutable models specified with fUML. We first characterize
the kind of fault that may be applied to fUML models, and
then we realize an injection mechanisms based on automated
model transformation. We apply the methodology to a simple
example in the space domain, adapted from a real satellite
system. To the best of our knowledge, fault injection in fUML
models has not been investigated yet.

The rest of the paper is organized as follows. Section II
introduces the background to our work, while Section III pro-
vides a brief review on executable UML models. In Section IV
we provide an overview of the proposed approach, whose steps
are then detailed in the subsequent sections: in Section V we
describe the characterization of faults for fUML models, in
Section VI we describe how faults are annotated into existing
models, and then in Section VII we describe how injection
is performed. A small example is discussed in Section VIII,
while in Section IX we discuss the related work. Finally,
conclusions are drawn in Section X.

II. BACKGROUND

A. Fault Injection

An accurate discussion of the different fault injection tech-
niques can be found in the work from Arlat et al. [7]. FI
can be performed at different levels in the system. A broad
categorization of techniques is between physical techniques,
in which faults are physically injected in the system, and
simulation-based techniques, in which models or simulators
are used.

One of the oldest physical FI techniques consists in bom-
barding the system with magnetic interference or ions, to
reproduce the effect of radiation encountered in space (e.g.,



gamma rays) [7]. Hardware-Implemented Fault Injection (HIFI
or HWIFI) is realized by directly altering the state of inte-
grated circuits, for example through pin-level ports used for
debugging or by “bridging” (i.e., shorting) pins together. These
techniques emulate the occurrence of faults by applying their
effects to the hardware. Software-Implemented Fault Injection
(SWIFI) consists in emulating the effects of physical faults by
injecting modifications in the software. SWIFI can be applied
at pre-runtime, by altering the code or data of the software
before execution, or at runtime, by injecting erroneous data or
altering the control flow during software execution [7].

More recently, Model-Implemented Fault Injection (MIFI)
techniques have emerged [8], following the progressive adop-
tion of models in the development of complex systems. MIFI
consists in a family of techniques in which FI mechanisms
are developed as rules for the modification of some kind of
model, e.g., hardware models, when no physical prototypes
are available yet; software models, to validate the software
design; or system models, for example to understand the effect
of faults in sensors or in communication.

The effectiveness of FI is limited by the precision achieved
in the emulation of faults. That is, the faults that are injected
must be representative of real faults that may be activated
during system execution. Therefore, one of the main aspects of
FI is selecting the kinds of faults of interest (“what to inject”),
and where they could manifest themselves (“where to inject”)
[9]. The fault model defines, for a certain system and context,
which are the faults that are considered possible and their
immediate effects. For example, in a networked system the
fault model may include assumptions on loss of messages,
partitioning of the network, ordering of messages, or hang of
nodes [10].

B. Model-Driven Engineering

MDE [5] is a methodology what advocates the systematic
use of models as primary artifacts throughout the engineering
lifecycle. Information should be described and managed at
the most abstract level as possible, and concrete artifacts are
generated from this primary information. MDE techniques
combine: i) Domain Specific Languages (DSLs) [11], which
formalize the information relevant for a certain domain; and
ii) model-transformations and code generators [12], which
analyze models and synthesize different kinds of artifacts, such
as source code, simulators, or documentation.

One of the foundational concepts of MDE is metamodeling.
A metamodel [13] formally defines what are the constructs that
can appear in a certain class of models and their relations,
that is, the abstract syntax of a language. A model is said
to conform to a certain metamodel if it respects its abstract
syntax. A model transformation receives as input a model ma

that conforms to a metamodel A, and produces as output a
model mb that conforms to a metamodel B.

The ability to automatically transform models and synthe-
size various artifacts helps to ensure the consistency between
system requirements, specification, implementation, and eval-
uation models. Furthermore, MDE reduces human mistakes,

by the application of state-of-the-art development practices,
embedded in automated transformations.

The MDE panorama has been strongly influenced by he Ob-
ject Management Group (OMG), an international consortium
that develops and maintains a number of standards related to
MDE. The most popular one is probably the UML standard
[14], which is widely used in the industry. Besides, the OMG
maintains standards for many different MDE tasks, including
metamodeling [15] and model transformation [16]. Among
those, the fUML standard [6] addresses executable models.

III. EXECUTABLE UML MODELS

With the introduction of MDE concepts, the UML gained
a rigorous definition, in terms of its metamodel. However, it
was still a semi-formal definition, as many aspects in the UML
standard are left to interpretation. Approaches to give a formal
execution semantics to UML models exist since long time.
For example, the UML/P adaptation by Rumpe [17] or the
“Executable UML” (xUML/xtUML) [18] have been devised
more than a decade ago. Furthermore, the literature features
multiple works in which parts of UML are precisely defined
for a certain domain or task.

A. Foundational UML

Because the different attempts at executing UML models
were substantially incompatible, the OMG developed the
“Semantics of a Foundational Subset for Executable UML
Models”, in short Foundational UML, or simply fUML. The
fUML standard [6] defines a precise semantics for a precise
subset of UML, thus enabling its execution.

fUML uses only a subset of the UML metamodel, limiting
its scope to the Class Diagram and the Activity Diagram.
Even considering only these diagrams, some elements are not
allowed in fUML, for example OpaqueExpression elements
and all the elements involving time and time intervals are
excluded. We provide here a brief review of the main elements
of the fUML metamodel.

Execution is based on UML Behavior; in general, a Behav-
ior can be executed by direct invocation, or by the creation
of an active object having such behavior [6]. In particular,
fUML is centered around Activity elements, a kind of Behavior
described by a diagram composed of nodes and edges, more
precisely ActivityNode and ActivityEdge elements (Figure 1).
Although they are also composed of nodes and edges, Activity
Diagrams should not be confused with state machines, which
have a completely different syntax and semantics.

Three kinds of nodes are allowed in an Activity. An
ExeuctableNode (basically, an Action) represents the execution
of some other behavior, while a ControlNode may alter the
control flow of actions within the activity. Actions and activ-
ities may receive objects as parameters and emit objects as
results; each parameter is specified by an ObjectNode element
(basically, a Pin), owned by the action (see Figure 2).

Edges can be of two different kinds. ControlFlow edges
connect ExecutableNode and ControlNode elements, basically
defining the execution order of the actions in the diagram



Figure 1: fUML Metamodel — Activity [6].

Figure 2: fUML Metamodel — Action [6].

(i.e., the control flow). ObjectFlow edges connect ObjectNode
elements, describing how data is passed through the different
actions.

B. Tool Support

To date, a limited number of tools support the execution
of fUML models. A reference implementation of a fUML
execution platform is available at [19]. In our experience,
the tool is very strict on the format of the input model, and
cumbersome manual modifications of the XMI file are required
on models edited with common graphical editors.

The Moliz tool [20] was probably one of the first tools
capable of executing regular UML models produced by the Pa-
pyrus diagram editor (provided of course that they are fUML-
compliant). Later, the Papyrus “Moka” plugin integrated model
execution in the main Eclipse Papyrus project. Currently,
Moka supports various execution semantics, including fUML.
Moka also supports the PSCS (Precise Semantics of UML
Composite Structure) standard [21], a more recent standard

Figure 3: Example of a fUML-compliant model, and its
execution using Moka.

that extends execution semantics to UML Composite Structure
Diagrams.

A review and comparison of the mentioned fUML tools
can be found in [22]. In this work we use Moka as execution
framework, for being integrated in one of the most popular
open source diagram editors. Figure 3 shows an example
fUML model being executed using Moka. During the execu-
tion, elements that are being executed are highlighted in green,
allowing the user to visually follow the execution steps.

IV. FAULT INJECTION IN FUML: OVERVIEW

In this section we provide an overview of the methodology
proposed in this paper. Figure 4 summarizes the adopted
workflow, highlighting the main steps and the tools adopted
in each of them.

The first step 1 involves understanding how the system of
interest can be modeled using fUML elements. As described in
Section III, fUML mainly includes elements from the Activity
and Class diagrams of UML, with some additional restrictions
to enable execution. From such analysis, the base system
model is created, which describes the nominal behavior of the
system under analysis. It should be noted that the model may
be a design model, to be used in the subsequent development
phases, or it may just serve as a verification model, to verify
the behavior of an existing system.

In the second step 2 , faults to be injected are attached to the
model, based on which system requirements need to be tested.
This step is based on the characterization of faults that may
be injected into an fUML model, which is one of the main
contributions of this paper. The characterization, described in
Section V, has been defined based on previous work on the
literature, adapting existing fault types to the fUML domain.

The third step 3 consists in actually injecting the faults
in the executable model of the system. In our proposal, this
step is performed automatically by model transformation. The
transformation receives as input the nominal fUML model of
the system and a specification of the fault(s) to be injected, and
it produces as output a modified fUML model affected by the
fault(s). The design and implementation of the transformation
is described in Section VII.

Finally 4 , the modified model is executed, and its output is
analyzed to determine the effects of the injected faults. This
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Figure 4: Overview of the approach proposed in this paper.

kind of analysis is not trivial, and it is related to the oracle
problem in testing [23], that is, knowing the expected output
of the system. This aspect is out of the scope of this paper, and
we assume that the expected output of the system is known,
for example, obtained by a golden run of the nominal model.

Steps 1 and 4 are based on existing tools, namely Eclipse
Papyrus and Moka. Steps 2 and 3 are the main contribution
of this paper, and they are described in the following.

V. CHARACTERIZATION OF FUML FAULTS

In this section we define which faults can be injected in
fUML models according to our approach, and how they are
specified.

A. Fault Model

We base our fault model on established work in the literature
on the fault injection topic. In particular, we took as reference
the work of Duraes and Madeira [24], later adopted also in
[9]. The experimental work in [24] identified a wide list of
fault types encountered in real software; each of these fault
types was described by an acronym and a short description,
effectively forming a taxonomy of software faults. The work
also identified a set of most common faults occurring in real
software, which is reproduced in Table I.

The characterization of faults that are relevant for fUML
models has been identified in two steps. First, the possible
modifications to fUML models have been analyzed, going
through the main metaclasses involved in a typical fUML
model. Then, the identified faults have been mapped to the
taxonomy in [24]. The result of this analysis is reported in
Table II. We note that we focused on pre-runtime faults only,
that is, faults that are injected in the model before its execution.
This choice is due to the injection method that we adopt, model
transformation, which works on the structure of the model
itself. Runtime injection is possible, e.g., on a running Moka
execution, but it is out of the scope of this paper.

Table I: Most common software faults occurring in the
field, according to the characterization proposed by Duraes
e Madeira [24], [9].

Type Description

MFC Missing Function Call
MVIV Missing Variable Initialization Using a Value
MVAV Missing Variable Assignment using a Value
MVAE Missing Variable Assignment Using a Expression
MIA Missing IF construct Around Statements
MIFS Missing IF construct plus Statements
MIEB Missing IF construct plus Statements plus ELSE Before State-

ments
MLC Missing AND/OR clause in branch condition
MLPA Missing small and localized part of the algorithm
WVAV Wrong Value Assigned to Variable
WPFV Wrong Variable used in Parameter of Function Call
WAEP Wrong Arithmetic Expression in Parameter of Function Call

The fault types in Table II are grouped by the kind of
diagram to which they apply (Class or Activity), and by the
metaclass they affect. Each fault is mapped to one of the fault
types identified in [24]. Most of them have been mapped to
the common fault types listed in Table I; however, we found
that five additional fault types are relevant for defining a fault
model for fUML, namely WBC1 (Wrong Branch Construct –
Goto Instead Break), WSUT (Wrong Datatype or Conversion
Used), WVIV (Wrong Value used in Variable Initialization),
WALD (Wrong Algorithm – Small Sparse Modifications),
and WALR (Wrong Algorithm – Code Was Misplaced). For
example, modifying the type of an input (or output) pin of an
activity, is clearly an instance of the WSUT fault type.

Table II also lists a Representativeness column, which is
described in the following subsection.

B. Representativeness

As a first step towards understanding representativeness of
fUML faults, we classified them based on how they are likely



Table II: Type of faults that may affect an fUML model and their relation with the fault characterization defined in [24].
Acronyms of faults are listed in Table I, except for: WBC1: Wrong Branch Construct – Goto Instead Break, WSUT: Wrong
Datatype or Conversion Used; WVIV: Wrong Value used in Variable Initialization; WALD: Wrong Algorithm – Small Sparse
Modifications; and WALR: Wrong Algorithm – Code Was Misplaced.

Diagram Metaclass Fault Description Mapping to [24] Representativeness

Class
Property Modify the type of the property WVAV Low
Class Modify the connections between classes WBC1 Medium
Operation Modify the variable used in the parameters of the operation WPFV High

Activity

ControlFlow Substitute a ControlFlow element with an ObjectFlow element WBC1 Low
ObjectFlow Substitute an ObjectFlow element with a ControlFlow element WBC1 Low
ControlFlow Modify the direction of the connection between two ControlFlow nodes WBC1 Low
Guard Modify the guard expression WVAV High
Object Remove the reference to the object MVIV High
DecisionNode Modify the decisions MIFS High
ActivityNode Remove the node MFC Medium
ValueSpecificationAction Modify the value produced by the action WVIV High
ValueSpecificationAction Modify the type of the object produced by the action WSUT Medium
CallBehaviorAction Modify the order of parameters that are connected to the action WALD Medium
CallBehaviorAction Invert the order of elements in a comparison action WALR High
ForkNode Remove the fork node MLPA Medium
ValueSpecificationAction Modify the type of the action specification WSUT High
Pin Remover an input or an output pin MLPA Low
Pin Modify the type of the pin WSUT Low

to actually appear as a residual fault in a fUML model of
a system. That is, how much they are representative of real
faults that may remain unnoticed in real fUML models. This
is of course a first classification effort, which would require a
more in-depth analysis, and, possibly, field studies on fUML
models of real systems.

The classification of faults based on their representativeness
is based on a simple heuristic: “how easy is to detect the fault
in the model”, which basically defines the chance that the fault
propagates, undetected, to the next development phases. Based
on this concept we define three representativeness classes:

• Low. The fault can be detected easily and consistently.
Typically, this means that the fault can be detected
automatically by some simple constraint-checking tool.

• Medium. The fault can be detected when the model
is analyzed with care. Typically, some important part
of the model is missing or modified with respect to
the intended functionality. However, the fault cannot be
detected automatically.

• High. The fault is difficult to detect because it makes
some subtle modification to the model. The model needs
to be thoroughly analyzed or tested in order to identify the
fault. For example, the modification of a branch condition
falls in this category.

The result of classification is reported in the last column
of Table II. For example, substituting a ControlFlow element
with an ObjectFlow element has been considered to have low
representativeness. In fact, even though the model would still
execute (likely resulting in wrong behavior), the fault can
be easily identified by the (f)UML validator provided with
Eclipse Papyrus. Conversely, modifying a guard expression
has high representativeness, because it can only be identified
with thorough testing of the model.

Figure 5: A screenshot of the MoDisco Model Browser
showing an UML Comment and its properties.

VI. ANNOTATION OF FAULT SPECIFICATIONS

After having identified the fault types relevant to fUML
models, the next step is to define how a modeler should specify
them in order to trigger the injection.

A. Attaching Fault Specifications to UML Comments

One of the simplest ways to extend an UML model with
custom information is by using comments. Comments are
instances of the UML Comment metaclass [14], which accept
arbitrary text in their body property. Furthermore, a comment
can be attached to one or more elements of the diagram,
through the annotatedElements association. Therefore, we use
UML comments for specifying the fUML element(s) on which
the fault should be injected, and the details of the fault.

Figure 5 shows the structure of an UML Comment, vi-
sualized using the MoDisco Model Browser [25]. In this
example, the fault applies to a DecisionNode object of Activity
“Activity1”, which are referenced into the annotatedElement
property. Note that, when adding a Comment to an Activity



Figure 6: Annotating the fUML models with a fault specifica-
tion using Eclipse Papryrus.

Diagram, the main Activity element is always added as an
annotatedElement of the comment. Figure 6 shows how the
annotation is performed by an end user, using the Eclipse
Papyrus editor.

For the transformation to work, and thus for the fault to be
correctly injected, two conditions must hold: i) the body of
the comment must conform to the specification language that
we devised specifically for this work, and ii) the fault type
(e.g., WALD) must be compatible with the object referenced
in the annotatedElement property, according to the mapping
in Table II. The specification language is detailed in the next
subsection.

B. Notation for the Specification of Injections

To define the details of the fault to be injected, we defined
a small DSL, based on the following keywords:

• InsertFault — Identifies the begin of a fault speci-
fication.

• into — Identifies the element in the model where the
fault will be injected (metaclass).

• wherepin — This keyword is used only in case of faults
that are injected on pins of diagram elements. It identifies
the pin, among those owned by the main object.

• what — Identifies the kind of fault to be injected,
according to the acronyms in Table II.

• source — This keyword is used for faults whose
application involves connectors, to identify the source of
the connection.

• target — This keyword is used for faults whose
application involves connectors, to identify the target of
the connection.

For simplicity we assume that elements in the fUML model
have unique names. This is typically the case, as duplicate
identifiers are considered an error by editors like Papyrus. In
any case, enforcing unique identifiers in a model is trivial, as
it only requires appending a counter to element names.

Two examples of fault specifications using the proposed
notation are listed in the following.

InjectFault into Pin,
wherepin "result",
what MLPA

InjectFault into ObjectFlow,
what WBC1,
source = object.target,
target = object.source

The first specification injects a MLPA fault (“Missing small
and localized part of the algorithm”) into the pin result of the

attached node, effectively removing the pin and all its connec-
tions. The second specification injects a WBC1 fault (“Wrong
Branch Construct – Goto Instead Break”) into an ObjectFlow
element, inverting the connection. In fact, the specification
swaps the target and the source of the ControlFlow object,
setting them to object.source and object.target, respectively.

The complete grammar of our language, in BNF (Backus-
Naur Form), is defined as follows:

〈spec〉 |= InsertFault into 〈pattern〉, what 〈fault〉,
〈pattern〉 |= 〈objname〉, | 〈objname〉 wherepin 〈pin〉,

〈objname〉 |= 〈instance〉 | 〈metaclass〉
〈fault〉 |= 〈simplefault〉 | 〈complexfault〉 〈arc〉

〈simplefault〉 |= WVAV | WPFV | MIFS | MFC
| WSUT | WVAV | MLPA

〈complexfault〉 |= WBC1 | MVIV | WALD
〈arc〉 |= source = 〈objname〉, target = 〈objname〉

〈instance〉 |= String identifier of an element of the model
〈metaclass〉 |= String identifier of a fUML metaclass

The language supports the specification of 10 fault types. Of
these, 7 are considered “simple” faults, because their specifica-
tion only involves the name of the fault and the object to which
it is applied, without the need of additional information from
the user. Conversely, the other 3 fault types are considered
“complex” faults, because their injection requires additional
information in the form of the source and target of a fUML
connector.

It should also be noted that we provide the option to
specify references to fUML elements either by their identifier
(〈instance〉 rule), or by their type only (〈metaclass〉 rule).
In case every element of the model has an identifier, the
first option permits to precisely identify the intended element.
However, this may not always be the case: often some elements
are left without identifier, or the identifier is hidden from the
user. This is particularly common for connectors in Activity
diagrams (i.e., instances of the ObjectFlow or ControlFlow
metaclasses). For this reason, we also support specifying
the the metaclass name only, leaving to the transformation
the task to identify the correct element, starting from the
ownedElements property of the Comment, and the context of
the model.

Figure 7 show an example using both notations. The source
element is specified by its identifier (“Teste”), while the target
element is specified by its metaclass only (“ForkNode”). In this
case, the injection will create an ObjectFlow element connect-
ing the Teste element and the element of type ForkNode close
to it, on the left.

VII. TRANSFORMATION IMPLEMENTATION

In this section we describe the implementation of the model
transformation that actually perform the injection of the fault.
The transformation takes as input an fUML model extended
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Figure 7: Specification of a fault to be injected, adding the
fault type information in the body of a UML Comment.

Table III: Steps for the injection of a MFC fault on a Node
element.

Metaclass Fault Type Fault Description
ActivityNode MFC Remove the node
Identify the node that will be removed
For each flow incoming to the node:

Identify the source and target properties of the incoming flow
Select one of the flow exiting the node
Identify the source and target properties of the outgoing flow
Set target of the incoming flow to target of the outgoing flow
Remove the outgoing flow

Remove the node

with fault specifications, and generates a modified, faulty,
fUML model.

A. Transformation Algorithm

The input to the transformation is an UML model that
contains at least an Activity Diagram. Besides that, the model
must comply with fUML, i.e., it shall include only UML
elements from the fUML subset. If these conditions are
satisfied, the transformation shall trigger an injection for each
UML Comment whose body conforms to the grammar in
Section VI-B. Also, as explained before, the specified fault
type must be compatible elements referenced by the comment.

Each fault type described in Section V has been analyzed
and the steps required for its injection have been defined using
pseudocode. The injections steps have been devised to ensure
that a correct model is generated, whenever possible. With
correct here we mean a model that conforms to the fUML
metamodel.

Table IV: Steps for the injection of a WALD fault on a
CallBehaviorAction element.

Metaclass Fault Type Fault Description
CallBehaviorAction WALD Modify the order of parame-

ters that are connected to the
action

Identify the action that will be modified
Identify the incoming flows of ObjectFlow kind
For each ObjectFlow incoming to the node

Set the target property to a different pin of the same action

Figure 8: Viatra pattern for identifying WALD specifications
that apply to CallBehaviorAction elements.

Table III and Table IV show the sequence of steps needed
to inject two different faults types: MFC, a simple fault, and
WALD, a complex fault. In more details, Table III lists the
steps required to inject a fault of type MFC (Missing Function
Call) on Node elements of a fUML diagram. Since this is a
simple fault, no additional paramters are needed. Table IV
details the steps required to inject a fault of type WALD
(Wrong Algorithm – Small Sparse Modifications) on elements
of type CallBehaviorAction. This fault accepts parameters
from the user, namely the new source and target elements
that will be used in the modified model. However, if they are
not specified, the algorithm will select a suitable element from
those available in the input model.

B. Injector Implementation

The injection is performed by a transformation that gen-
erates a modified model. The transformation is implemented
with a combination of the Viatra [26] and the Xtend [27] tools.
This is a common configuration for model transformation, in
which Viatra is used to find the relevant elements in the model,
and Xtend is used to actually perform the modifications.

Also in our case, Viatra is then responsible for identifying
the annotations of specific fault types in the model. For each
fault type in Table II we created a Viatra pattern to retrieve the
model elemens annotataed with that fault. An example pattern
for the WALD fault on CallBehaviorAction elements is shown
in Figure 8.

A Viatra pattern specifies as parameters the kind of objects
it works on. In this case, the WALD pattern applies to: i)
an Activity (the main activity of the diagram), ii) a Comment
(the fault annotation), iii) a CallBehaviorAction (the target of
injection), and iv) a String (the fault specification itself).

The pattern identifies a WALD annotation if: i) the Comment
is connected to the CallBehaviorAction, ii) the Comment has
the String as its body, iii) the Activity contains the Comment,
and iv) the String is a WALD specification. When the elements
satisfying the pattern conditions are identified, they are passed
as a tuple to the Xtend transformation code, which applies
the required manipulation steps specific for each fault (e.g.,
Table IV for WALD).



The transformation always tries to produce a correct model,
by taking into account the context around the injection point.
However, this is not always possible (e.g., removing an Action
and not having a compatible one to connect the dangling
flows). This is however a common problem in fault injection,
and it is not specific to our approach.

VIII. EXAMPLE APPLICATION

In this section we show how our approach can be applied
in practice, using a nanosatellite system as running example.

A. System Overview

The NanosatC-BR2 is a nanosatellite developed by the Na-
tional Institute of Space Research of Brazil (Instituto Nacional
de Pesquisas Espaciais, INPE) and other partners, following
the CubeSat standard. The objective of the satellite is to study
the Earth’s ionosphere and magnetosphere; in particular, the
disturbances in the region of the South Atlantic Anomaly
(SAA), which cause negative effects in telecommunications
and localization services like GPS [28], [29].

The NanosatC-BR2 adopts a 2U CubeSat platform, meaning
that it is composed of two basic units (2U) of the platform,
connected together. The satellite carries the On-Board Com-
puter (OBC) and a number of payloads, that is, software that
provides some functionality to the satellite, besides the basic
operations provided by the OBC. Among the payloads carried
by the NanosatC-BR2, the Langmuir Probe (LP) is a scientific
component used to measure electron numerical density and
other properties of plasma. Another payload is the Attitude
Determination System (ADS), which calculates the orientation
of the satellite with respect to three axes, based on magnetic
measurements collected from embedded sensors [30].

During the development of the system, modeling has been
extensively used to support the specification of requirements
and its later verification. However, software models were
primarily defined using the UPPAAL language [30].

B. fUML Model of the Langmuir Probe

Based on the report in [30] and on the requirements of the
system, we created an fUML model of the LP component,
to use it as base model for showing the applicability of our
approach.

The LP exposes a single behavior: the acquisition of data
from the probe itself and its transmission to the OBC. The
transmission of data to the OBC occurs in chunks: the probe
collects a certain amount of data, filling its internal buffer, and
the buffer is then transmitted to the OBC.

We first defined the LP component as a Class, with its
attributes and behaviors (Figure 9). This step is necessary in
fUML when we want to model behavior that operates on the
internal state of a component, because UML Activity elements
do not hold state.

The Activity Diagram in Figure 10 represents the main
behavior of the LP component. The probe is first initialized
(Initialize action) and then the GatherData action is executed.
GatherData returns true if there is still data to be collected,

Figure 9: Class Diagram to specify the attributes and behav-
iors of the LP component.
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Figure 10: Model of the main behavior of the LP payload.

and in this case it is executed again. After all data has been
collected, the data is sent to the OBC (SendData action) and
then the activity terminates.

C. Fault Injection and Results

When needed, fUML actions can be refined by more de-
tailed diagrams in a top-down approach. This means that the
internal specification of an action can be detailed by a separate
Activity Diagram describing the implementation of the action
itself. While it is not possible to detail the entire model in this
paper, we focus here on the GetDataPack activity, which is
called inside the GatherData action of Figure 10.

The GetDataPack activity (Figure 11) represents the col-
lection of a single data element from the sensor, and its
storage into the component’s buffer. The activity is composed
of two main tasks: i) obtaining the data form the sensor
and storing it into the buffer (ReadData, ReadSensorData,
InsertData, SetData); and ii) updating a counter to keep track
of the amount of data stored in the buffer (ReadCounter,
AddOnePack, SetCounter). It should be noted that actions
ReadData, InsertData, and SetData operate on the Data2Send
attribute of the component (see Figure 9), while actions
ReadCounter and SetCounter operate on the counter attribute.

Figure 11 includes the specification of a fault to be injected
in the model. The diagram specifies a fault of type WBC1 to be
injected in the ObjectFlow element connected to the comment.
As described in Table II, the fault changes the ObjectFlow
to a ControlFlow, using the source and target elements as
new connection ends. The connection between the result
and value pins, of ObjectFlow kind, will then be replaced
by a ControlFlow connection between the AddOnePack and
the SetCounter actions. Such modifications has two potential
consequences: i) the object that is emitted on result pin will not
be able to reach the value pin, and ii) the action SetCounter is
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Figure 12: Model of the main behavior of the LP payload,
modified to include a timeout for data acquisition.

now forced to be executed right after the AddOnePack action.
In practice, the second one has no effect in this particular
model, since the two actions are already executed in that
sequence.

To verify the actual impact of this fault on the overall
system behavior, we run the transformation to inject the fault,
and then we execute the main behavior with Moka. The
injected fault manifest itself as an hang of the LangmuirProbe
behavior, causing it to enter in an endless loop of calls
to the GatherData action (see Figure 10). This is caused
by the counter attribute not being updated anymore (action
SetCounter does not receive the updated value), which in turn
causes the action GatherData to never signal that the data
acquisition phase has ended.

A possible countermeasure to this fault is to limit the acqui-
sition phase to a certain amount of time, after which a timeout
is issued. The modified version of the LangmuirBehavior to
include a timeout is shown in Figure 12. The timer is initialized
(StartTimer), then the timeout value is set (TimeoutValue),
and its expiration is verified at each loop (CheckTimeout).
In case the activity CheckTimeout returns true, the activity
is terminated. This simple example shows how the proposed
approach can be used for uncovering potential flaws in a
system model conforming to fUML.

IX. RELATED WORK

The authors of [24] defined a taxonomy of software faults by
an accurate analysis of real software faults and categorization.

The same taxonomy has been later used by [9] and many other
works. We based our work on this taxonomy, in particular for
the mapping of the identified fUML faults (Table II).

One of the first works on model-level fault injection was
the MODIFI framework [8], which focused on behavioural
models specified in Simulink. Conversely, our work focuses
on UML models, and specifically on the fUML subset. The
InRob approach [31] proposed the extension of state machine
models with faulty transitions, as a support to integration
and robustness testing. The work in [32] defined mutation
operators for Class Diagrams, with the objective to support
mutation testing. Other work have addressed fault injection
at model level in different ways; however, very few works
addressed fault injection on executable fUML models.

By themselves, executable models are not a widely explored
topic yet. One of the most general works on model execution
in the MDE panorama is the work on xMOF [33]. The authors
integrate fUML with MOF, creating a new metamodeling
language with support for model execution, called xMOF
(eXecutable MOF). xMOF permits specifying both the abstract
syntax as well as the execution semantics of any DSL based
on MOF. This is the theoretical work behind the Moliz tool
mentioned above [20].

Other work has focused on different aspects of executing
fUML models. The authors of [34] analyzed version 1.0 of the
fUML specification, recently released at that time, highlighting
its limits in terms of controllability and observability of
execution. The authors then proposed an extension to enable
debugging of fUML models. The authors of [35] proposed
a modeling and co-simulation environment for CPS, enabling
the integrating fUML models in simulation environment based
on the Functional Mock-up Interface (FMI). The work in [36]
provides an execution solution for UML profiles, formalizing
their execution semantics based on fUML. The GEMOC
Initiative maintains GEMOC Studio [37], an Eclipse-based
framework for the development of heterogeneous executable
modeling languages that integrates recent efforts in the area
of executable models.

A few works have started addressing testing and verification
of non-functional properties on fUML models. The work in
[38] proposes an approach to extract runtime information from
fUML models, and exploits this information to perform timing
analysis directly on the model. The work in [39] and [3]
proposes an approach for the semi-automated application of
Software FMEA (Failure Modes and Effects Analysis), com-
bining fUML behaviors and Composite Structure Diagrams.
That work also uses model-level fault injection, as detailed
in [3]. However, fault injection is performed on components
interfaces only, i.e., not on the fUML behaviors. In this paper
we addressed the injection of faults in fUML models, and in
particular in Activity Diagrams.

X. CONCLUSION

In this work we have proposed an approach for specifying
and injecting faults in models conforming to the Foundational
UML subset, which allows model execution. This is the first



step towards applying fault injection in fUML models. In this
paper, we have demonstrated the applicability of the approach
with a simple example in the space domain. As future work,
we plan to perform an accurate validation of the proposed
approach, both in terms of correctness of the injection process,
as well as usability for end users. At this stage, performing
an accurate experimental validation appears to be particularly
challenging, because the still limited adoption of fUML in the
industry.
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“Road to a reactive and incremental model transformation platform:
three generations of the VIATRA framework,” Software & Systems
Modeling, vol. 15, no. 3, pp. 609–629, May 2016.

[27] L. Bettini, Implementing Domain Specific Languages with Xtext and
Xtend, 2nd ed. Packt Publishing, 2016.

[28] C. L. G. Batista, E. Martins, and M. de Fatima Mattiello-Francisco, “On
the use of a failure emulator mechanism at nanosatellite subsystems
integration tests,” in 2018 IEEE 19th Latin-American Test Symposium
(LATS), March 2018.

[29] N. J. Schuch et al., “The Present & Future of the Brazilian INPE-
UFSM NANOSATC-BR, CubeSats Development Program,” Annales
Geophysicae Discussions, vol. 2019, pp. 1–16, 2019.

[30] D. P. de Almeida, “Modelagem da Interoperabilidade entre Computador
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