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Abstract. Software Product Lines (SPLs) enable and maximize reuse of soft-

ware artefacts, using software variability as central technique. In Model-Based 

Safety Analysis, system and software models are annotated with failure models 

that are used to produce safety analysis artefacts like fault trees and FMEAs. 

However, little work has been done to show MBSA in product lines, exploiting 

failure models to create safety analyses for variants in the product line. State 

machines have been widely used to support both fault propagation and probabil-

istic system safety analysis. In this paper, we introduce an approach to support 

variability modeling and reuse of state-machine diagrams used for system safe-

ty analysis. The approach enhances traditional software product line cycle with 

new activities aimed to support the reuse of safety information using state-

machine diagrams and facilitates the management of the diversity of functional 

safety across system configurations using variability models. We evaluate our 

approach using an automotive braking system where we show reduction of the 

burden of safety analysis and improvements in traceability between safety arti-

facts and variability abstractions. 

 

Keywords: Safety analysis, state-machine diagrams, software product lines, 

variability, reuse. 

1 Introduction 

Safety-critical software is becoming more complex due to the greater possibilities 

offered for inter-connectivity as well as due the increased computing power [1]. The 

mass customization in the automotive industry leads to a higher variability within a 

single product with thousands of variations points [2]. Automotive electronic control 

units (ECUs) [3], used in airbags, electronic window lifter and driver assistant sys-

tems, and powertrain controllers [4] are highly variant-intensive. A failure in safety-
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critical software may lead to catastrophic consequences to the environment, finances, 

or putting human lives at risk.     

In safety-critical systems, the reuse of software components demand the reuse of 

safety analysis artefacts. The safety information is the key point of diversity in safety 

analysis of variant-intensive systems and software product lines. Reusing state-

machine diagrams for system safety analysis demands a way to manage diversity of 

emergent hazardous states and safety requirements. Safety requirements are placed 

measures to eliminate or minimize hazard and/or component failure effects on the 

overall safety. Current industry practice for safety artifact reuse in certification 

processes relies only on clone & own approaches [1] [3]. Also, balancing safety certi-

fication and reuse of safety information still remains a challenge to product line safety 

analysis [2] [5] [6] [7]. 

In order to address these challenges, we propose an approach, which extends a pre-

vious work [8] with the provision of semi-automated support for variability modeling 

and management in system safety analysis using state-machine diagrams. We evaluat-

ed the effectiveness of our solution in a variant-intensive automotive wheel braking 

system to enabling the systematic reuse of safety information of state-based safety 

models and reducing the burden to performing safety analysis activities. The remain-

der of this paper is as follows. Section 2 presents the related work. Section 3 introduc-

es the background and concepts required to understand the proposed solution. In Sec-

tion 4 we describe our approach consisting in new activities in addition to the classi-

cal Software Product Line (SPL) [9] lifecycle to support the reuse of safety infor-

mation. Section 5 provides an evaluation of our approach in the automotive domain 

and Section 6 presents the conclusions and future work. 

2 Related Work 

The research on variability management in system safety analysis covers extensions 

of traditional safety analysis techniques to suit software product line processes [10] 

[11] [12] [13], and model-based techniques [5] [7] [14] [15]. Dehlinger and Lutz [10] 

and Feng and Lutz [11] proposed Software Fault Tree Analysis (SFTA) for product 

lines. In a SFTA, each fault tree leaf node is enriched with variability information in 

the domain engineering phase. In the application engineering phase, a pruning tech-

nique is applied for reusing software fault trees in a specific product variant. The 

Product Line SFTA was further extended to integrate state-based modeling [13]. This 

allows mapping fault tree leaf nodes to components and specifying the behaviour of a 

component in a state chart. Performing variability management on safety properties 

prior to FTA and Failure Modes and Effects Analysis (FMEA) enables the traceability 

of variability in the design and context through the safety lifecycle and the systematic 

reuse of safety assets.  Schulze et al. [5] proposed an approach that integrates Medini
1
 

safety analysis and pure::variants
2
 tools to support variability management in automo-

tive functional safety. Kaßmeyer et al. [14] [15] propose a systematic model-based 

                                                           
1 https://www.ansys.com/products/systems/ansys-medini-analyze 
2 https://www.pure-systems.com/products/pure-variants-9.html 
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approach integrated with change impact analysis techniques. This approach combines 

requirements engineering, architectural design, safety analysis, and variability man-

agement tools, allowing seamless safety engineering across product variants. Domis 

et al. [7] extended the Component Integrated Component Fault Trees (C2FT) with 

variation points and integrated it within UML via a profile into Enterprise Architect
3
 

commercial tool. These approaches [7] [14] provide efficient solutions for variability 

management and change impact analysis in automotive functional safety.  

Montecchi et al. [16] provide formalism for variability modeling into Stochastic 

Activity Networks (SAN) models. Bressan et al. [17] presented an approach to gener-

ate variants of SPEM 2.0 process models for automotive software components based 

on the allocated Automotive Safety Integrity Levels (ASILs). State of the art Model-

Based Design [18] [19] [20] [21] and Safety Assessment frameworks [22] [23] [24] 

provide certain degree of support for variant management and reuse of safety models 

via inheritance [18] [19] [20] [21] [22] [23], and specification of different implemen-

tations for the failure behaviour of a component stored into error model libraries [24]. 

However, these mechanisms are limited to manage variability into safety models at a 

coarse grained level, not supporting variability on hazard causes, error states and state 

transitions. Although conventional SPL approaches [9] [25] have been extended 

[5][6] to address safety certification, supporting the diversity of safety information is 

still challenging [1] [8] due to: CH1 the lack of considering the impact of variability 

in design choices for specifying component failure models, e.g., qualitative failure 

logic and stochastic state machine diagrams, used to create safety analysis for system 

variants; CH2: lack of traceability between SPL variability abstractions, design 

choices, and variation into elements and parameters from state machine diagrams; and 

CH3: lack of mechanisms to resolve structural and parametric variability into failure 

models (state machines). 

3 Background 

We provide an overview of Product Lines, Base Variability Resolution, ISO 26262 

safety lifecycle, and the CHESS-State-Based Analysis used in the proposed solution. 

3.1 Software Product Lines and Base Variability Resolution 

A Software Product Line (SPL) is a set of software-intensive system that share a 

common and manageable set of features that satisfy the specific needs of a particular 

market segment [9]. Feature stands for a distinct system characteristic visible to the 

end-user [25], e.g., wheel braking. The commonalities and variability’s of a family of 

systems from a particular domain and their relationships are expressed in a feature 

model. Feature modeling represents the product line variability at the highest abstrac-

tion level. Features express high-level functional and quality requirements from an 

application domain. Feature-Oriented Domain Analysis (FODA) [25] is the first and 
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widely used feature modeling notation, which supports the specification of mandato-

ry, optional and alternative features and structural relationships between features, i.e., 

decomposition, generalization, specialization, and parameterization. The wheel brak-

ing feature of a car family can be configured as four or front wheel braking (Fig. 1). 

 

Fig. 1. Features for an automotive wheel braking system family. 

The development of a SPL encompasses domain engineering and application engi-

neering processes. The product line core assets are produced during the domain engi-

neering and further reused in the application engineering [25]. The domain engineer-

ing process involves domain analysis, for identifying commonalities and variability in 

the domain requirements using a feature model, the realization of common and variant 

domain features by developing the SPL architecture and implementing their compo-

nents (core assets), and specification of traceability between features and the core 

assets. In the application engineering, we create system variants from the core assets, 

produced in the domain engineering, by exploiting variability and ensuring the correct 

binding of variation points according to product requirements. A variation point 

stands for places in the domain artefacts, e.g., design, where variability can arise. 

Base Variability Resolution (BVR) [26] is a language and tool, built upon Com-

mon Variability Language (CVL) [27] standard, to supports standard variability mod-

eling in Meta-Object Facility (MOF)
4
 compliant base models, e.g., UML and SysML 

models. BVR supports the generation of product variants from a base model via three 

different and inter-related models for specification of variability abstractions and 

variability realization. Variability abstractions are specified in a VSpec (feature) mod-

el supplemented with constraints, and a corresponding resolution model (VResolution) 

that defines the feature selection for a given product variant. In a VSpec model, the 

mandatory features are connected to the parent feature via solid lines, and dashed 

lines represent optionality. The VSpec model allows the specification of constraints 

between features in Object Constraint Language (OCL). 

 

3.2 The ISO 26262 Safety Lifecycle 

ISO 26262 [28] prescribes requirements for functional safety on electrical/electronic 

systems embedded into small and medium sized (up to 3.5 tons) general purpose road 

vehicles. This standard provides a safety lifecycle for automotive systems, a risk-

based approach for determining risk classes (Automotive Safety Integrity Levels - 

ASILs), and requirements for validation and confirmation measures to ensure that an 

acceptable level of safety is achieved. 
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After allocating functions to systems/subsystems/components (items) and specify-

ing their dependencies and interactions with the environment at the vehicle level, the 

safety lifecycle is initiated, i.e., the development category of all parts of the item is 

analyzed to make the distinction between a new item development and a modification 

to an existing item. Items can be software, electrical or electronic system components. 

Hazard Analysis and Risk Assessment (HARA) is performed to identify and catego-

rize the hazards that malfunctions in the item can trigger and formulate the safety 

goals related to the mitigation of hazardous events, to avoid unreasonable risk. The 

Functional Safety Concept shall derive the functional safety requirements from the 

safety goals and allocating them to preliminary architectural elements of the item. 

Fault detection and mitigation, and fault tolerance mechanisms are examples of func-

tional safety requirements. Safety goals are results from HARA, expressed in the form 

of ASILs, which define measures to mitigate hazard effects. Different safety goals are 

defined to achieve each ASIL. Achieving compliance with standards increases around 

75% to 150% of the total development costs [29], due to the additional effort with 

system safety analysis, verification, and validation activities. Although standards 

provide guidance to the development of single products, the industrial production is 

inherently variable [1][3][4], which different products are built upon a common base 

system. Variation in the design propagates throughout potential fault, error, and fail-

ure behaviors of subsystems and components, stored into failure logic and/or stochas-

tic state-machine diagrams, which may rise in different variants and environments.  

 

3.3 CHESS Framework and CHESS State-Based Analysis 

The Composition with guarantees for High-integrity Embedded Software components 

aassembly (CHESS) framework is a model-driven, component-based, methodology 

and toolset support for the design, development, and safety analysis of high-integrity 

systems from different domains [21]. CHESS defines a UML-based modeling lan-

guage, called Composition with guarantees for High-integrity Embedded Software 

components aSsembly Modeling Language (CHESSML) [20], and includes a set of 

plug-ins to perform code generation, constraint checking, performance, and safe-

ty/dependability analyses. The CHESS framework supports qualitative fault propaga-

tion, using CHESS-Failure Logic Analysis (CHESS-FLA) [22], and quantita-

tive/probabilistic state-based (via CHESS-SBA) [30] safety/dependability analysis 

techniques. CHESS-FLA allows engineers to decorate CHESSML component-based 

models with dependability information, execute Failure Logic Analysis, and get the 

results back-propagated onto the original model. In this paper, we focus solely on 

CHESS-SBA. CHESS State-Based Analysis (CHESS-SBA) [30] supports safety 

analysis (Hazard Analysis and Risk Assessment - HARA) using state machine dia-

grams. The term “state-based” denotes this technique uses a representation of the 

system based on possible states with respect to dependability, and possible transitions 

between them. The CHESS-SBA plugin supports users to perform quantitative (prob-

abilistic) safety/dependability analysis on CHESSML models, by enriching them with 

stochastic dependability information, including failure and repair distribution of com-

ponents, propagation delays and probabilities, and fault-tolerance and maintainability 

concepts. Such information can be added to a CHESSML element in two ways: i) via 
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«simpleStochasticBehavior» stereotype that allows attributes (e.g., reliability) to be 

attached to hardware components. This stereotype is used for specifying probabilistic 

information of a hardware failure, e.g., time to the occurrence of a failure, possible 

failure modes, or the time required to repair the component after the occurrence of a 

failure, or ii) with an error model, i.e., a state machine diagram in which a more de-

tailed failure behavior, in terms of hardware faults, software bugs (faults, errors, 

flaws) introduced by developers in the design, development, or operation leading it to 

produce an incorrect or unexpected result, failure modes, and internal propagations, of 

a component can be specified. This enriched model is transformed into a stochastic 

state-based model, using a variant of the Stochastic Petri Nets (SPNs) formalism. The 

model is then analyzed to evaluate the satisfaction of system dependability properties 

(e.g., availability) in the form of probabilistic metrics. 

Fig. 2 shows an example of a CHESSML error state machine diagram for the 

Electronic Pedal component of an automotive wheel braking system further used in 

the evaluation of our approach. This state-machine expresses the effects of external 

faults and their propagations as internal error states, and output failure modes. It 

comprises healthy and undetected states, with two state transitions. The first state 

transition moves from the healthy to an undetected error state due to the occurrence 

of an omission failure in the component input port (InternalPropagation) caused by 

an external fault in the output port of an external component or by a cyber-attack, 

e.g., denial of service. The second state transition is activated after the propagation of 

the omission external failure throughout the Electronic Pedal output port. A state ma-

chine may also contain choice, fork and/or join nodes for expressing logical relation-

ships between states. 

 

Fig. 2. Example of CHESS-SBA error model state machine diagram. 

Performing dependability analysis using CHESS requires the specification of anal-

ysis contexts to collect information about the given analysis to be executed, e.g., fault 

tree analysis («GaAnalysisContext»), state-based analysis («StateBasedAnalysis»). A 

UML component tagged with GaAnalysisContext stereotype is used to refer to the set 

of system entities, by setting the stereotype “context” property with a logical expres-

sion describing the combination of component failure leading to the occurrence of a 

system hazard, to be considered for fault tree analysis using xSAP [31] tool. Fault tree 

analysis results describe the propagation of component failures specified within the con-

text. A UML component tagged with StateBasedAnalysis is used to set the parameters: 
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measure (the targeting property, e.g., reliability), the targeting failure modes (e.g., 

omission), dependable components and their ports, required to calculate the probabil-

ity of components failing at a certain time or within a time range. In this paper, we 

used the integration between CHESS-SBA and BVR within the AMASS5 platform for 

mapping error states and transitions from a state machine diagram to domain variabil-

ity abstractions (VSpecs) in the Variability Realization model. 

4 A State-Based Dependable Software Product Line  

We introduce the State-Based DEPendable Software Product Lines (DEPendable-

SPL), which extends the traditional variability analysis [9][25] techniques to cover 

system safety analysis, i.e., hazard analysis and risk assessment and component fault 

modeling, using state-machine diagrams. The approach supports the identification of 

hazards, error states and transitions, associated stochastic annotations, and safety re-

quirements that hold for all product variants. We adopted the concept of 150% state-

machine(s) for variability modeling in safety analysis for reconfigurable systems. We 

also adopted a negative variability strategy for mapping variability abstractions to 

system design and error state machine elements in the domain engineering phase, and 

for variability resolution in application engineering phase. The concept of a 150% 

model relates to a superset approach where 100% configuration model(s) for product 

safety analysis is/are obtained, via selection and resolution of variation points, from 

150% model(s). In our case, the 150% models are CHESSML analysis context model 

for hazard and state-based analyses, and state-machines that describe the failure be-

haviors of components. 

The 150% state-machine diagrams for product line safety analysis are produced in 

the domain engineering phase, and 100% models are then derived, via negative varia-

bility with the support of BVR tool in the application engineering phase. In a negative 

variability strategy, safety information elements not needed for a specific system vari-

ant are removed from 150% domain model (s). Our approach focuses on variability 

management on hazardous events, error states, and state transitions from CHESS 

state-machines in the domain engineering phase. In the application engineering phase, 

we focus on the reuse of domain safety artefacts and automatic synthesis of fault trees 

and FMEA from the reused state-machine diagrams. In our approach, we established 

a clear distinction between reusable safety artefacts, i.e., state machine diagrams, 

from those that can be generated. The State-Based DEPendable-SPL encompasses 

four activities in the domain engineering phase and three activities in the application 

engineering phase (Fig. 3). We describe each approach activity though this section. 

4.1 Domain Engineering Phase 

The domain engineering phase encompasses: domain analysis, product line design 

with safety analysis (Hazard Analysis and Risk Assessment and component fault 

                                                           
5https://www.amass-ecsel.eu/content/about 
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modeling), and mapping variability abstractions to CHESSML models, error states 

and transitions from state machine diagrams. 

Domain Analysis: Here, we identify system features and their relationships with 

safety-related features (i.e., features that impact on safety analysis). Firstly, we identi-

fy common and variable system features, followed by the identification of features 

that impact on safety analysis. Safety-related features refer to characteristics of the 

operating environment (where) and how a SPL product is used. Finally, we specify 

the interactions among system and safety-related features via constraints, e.g., impli-

cation, exclusion, in the domain feature model. The product line feature model with 

system and safety-related features and their interactions, in our case, the BVR VSpec 

model (Fig. 3a), is the output of this activity. Interactions among system and safety- 

related features act as key driver to product line design [32] and safety analysis, tak-

ing a direct impact on design decisions, emergent hazardous events and safety re-

quirements to avoid unreasonable risks and achieving compliance with standards. 

 

Fig. 3. An overview of state-based DEPendable-SPL. 
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Product Line Design with Safety Analysis. In this activity, we specify the reali-

zation of the variation points and their variants, defined in the SPL feature model, in 

the architecture using CHESSML Block Definition and Internal Block Diagrams, and 

we perform safety analysis using CHESS state-machine diagrams. Firstly, we specify 

the subsystems, components, their ports and connections that represent the realiza-

tion/materialization of system and safety-related features in the architecture. After 

performing the preliminary product line design, we start safety analysis (HARA) con-

sidering the feature interactions specified in the feature model representing the do-

main of the targeted reconfigurable system, and the architecture model. During safety 

analysis, we identify the potential hazards and failures that can emerge in architectural 

subsystems and components associated with different feature interactions. Product 

Line Safety Analysis encompasses the following sub-activities: Identification of Fea-

ture Interactions that may Impact on Product Line Safety Analysis, Hazard Analysis 

and Risk Assessment, and State-Based Component Fault Modeling. 

Identification of Feature Interactions that Impact on Product Line Safety 

Analysis: it encompasses: i) identify the combinations among system features, which 

conform to the product line feature model and their relationships, with elements from 

architectural and behavioural models. ii) For each identified interaction between sys-

tem features, we analyse combinations among safety-related features. iii) Finally, we 

combine the identified system feature interactions with safety-related feature interac-

tions to derive a set of combinations among system and safety-related feature interac-

tions relevant for the stakeholders. We introduced this activity in our approach since it 

would be prohibitive performing domain safety analysis considering all possible in-

teractions among system and safety-related features expressed in the SPL feature 

model. Although we consider feature interactions in our approach, it is important to 

highlight that we focus on performing safety analysis from the perspective of the 

whole SPL domain instead specific configurations.  

Hazard Analysis and Risk Assessment: This activity encompasses the following 

steps: i) choosing a specific feature interaction to be considered in the analysis; ii) 

identifying combinations among component error states that may lead to the occur-

rence of hazards; iii) specify the context of each hazard by combining component 

failure modes leading to the occurrence of a hazard in expressions using logical op-

erators, e.g., Omission-C1.out1 and Omission-C2.out1, in a UML component tagged 

with «GaAnalysisContext» stereotype; and iv) specify the targeted properties (e.g., 

severity), failure modes and components associated with each identified hazard in  

«StateBasedAnalysis» tagged components. The output of this activity is a 150% 

CHESS Analysis Context model (CAC).  

State-based Component Fault Modeling: We specify the failure behavior of each 

product line architectural subsystem/component in a separated 150% CHESS state-

machine diagram by describing: i) the potential output deviations (failures) that may 

contribute to the occurrence of hazards in each feature interaction under analysis. 

Each output deviation should be modeled as an error state that describes the compo-

nent failure behavior; and ii) the potential causes, in terms of input failures, internal 

faults or combinations among them, which lead to the occurrence of each identified 

output deviation. We can also assign probability information to error states and state 
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transitions. We apply these steps to analyze the components based on the assumptions 

and the data associated with each feature interaction under analysis.  

The outputs of this activity are 150% state-machine diagrams that describe how the 

components may fail and contributing to the occurrence of hazards in each analyzed 

feature interaction. Since the causes of a component failure may change according to 

design choices and feature interactions, we recommend specify the commonalities and 

variability inherent to the failure behavior of each component in a separated 150% 

state machine diagram (see Fig. 3b). 

 Mapping Variability Abstractions to Error States and Transitions: In this ac-

tivity, we specify mappings linking variability abstractions (Fig. 3a) to their materiali-

zation into CHESSML analysis context and state machine model elements (Fig. 3b). 

This is needed for integrating safety analysis information from state machines within 

the SPL core assets, and enabling the systematic reuse of safety information in the 

application engineering phase. We adopted a negative variability strategy for mapping 

features to their realization into fragments of superset CHESSML models and state-

machine diagrams into the BVR variability realization model (Fig. 3c). Since we fol-

lowed a negative variability strategy, we specify the realization of variability abstrac-

tions into BVR fragment substitutions containing placement fragments with refer-

ences to model elements that should be removed from superset CHESSML models 

and state machine diagrams when a given feature is selected. We specify the map-

pings of features to their materialization into: i) the 150% CHESS block diagrams, ii) 

analysis context model for hazard analysis and iii) component state machine diagrams 

via fragment substitutions with a placement and an empty replacement fragment. An 

enriched BVR VRealization model with the specification of mappings linking varia-

bility abstractions to their materialization into: CHESSML models and error state-

machine diagrams is the output of this activity. The VRealization model enables the 

automatic derivation of 100% CHESSML models and state-machine diagrams in the 

application engineering phase.  

4.2 Application Engineering Phase 

Here we describe the application requirements engineering, variability resolution and 

architecture customization, product state-based and fault tree synthesis activities.  

Application Requirements Engineering: We specify application-specific re-

quirements in a feature model, via selection of features specified in the product line 

feature model (Fig. 3a), in the resolution model (Fig. 3d) using BVR resolution editor. 

The resolution model with the selected domain features that address the application 

requirements is the output of this activity. The resolution model is the input for varia-

bility resolution and architecture customization. 

Variability Resolution and Architecture Customization: In this activity, we re-

solve the variability expressed in 150% CHESS-ML models and state machine dia-

grams to derive 100% models (Fig. 3e) according to the feature selection specified in 

the resolution model. We perform this activity with the support of BVR execution 

engine (see Section 3.1). Here, we execute the BVR engine for product derivation by 

providing the following input artefacts: the VSpec, VResolution and VRealization 
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models, the 150% CHESS-ML models and state machine diagrams. The 100% 

CHESS-ML architecture and analysis context models, and state machine diagrams 

that describe the failure behaviors of components in the feature interactions specified 

in the resolution model are the outputs of this activity. 

It is important to highlight that in cases where application-specific features not 

provided by the SPL are specified during application requirements engineering; engi-

neers can update the derived 100% CHESSML system model with the addition of 

subsystems and components that address application-specific features. Different as-

sumptions for product safety analysis can emerge from the added product-specific 

components to the reused 100% CHESSML system models and interactions among 

product-specific features. The interactions between existing and product-specific fea-

tures (system and safety features) should be considered during product safety analy-

sis. In this case, engineers perform product safety analysis following the same steps 

defined in the domain engineering phase.  

Product-specific components, analysis context and state machines may provide 

feedback to the SPL development process. To achieve this goal, it is needed enhanc-

ing the product line VSpec model, the 150% CHESSML models for design and safety 

analysis, and the VRealization model with additional fragment substitutions. This is 

required to enable the reuse of product-specific components and their associated safe-

ty analysis information in the development and certification of other safety-critical 

products. The feedback to the product line development process in the application 

development is supported in our approach via CHESS and BVR integration. Such 

integration allows users updating the VSpec model with application-specific features, 

and the VRealization model with fragment substitutions for mapping these features to 

CHESS-ML and state-machine elements added to the SPL repository. 

Product State-Based Analysis and Fault Trees Synthesis: In this activity, we 

perform state-based analysis, via execution of CHESS-SBA, to estimate probabilistic 

properties (e.g., severity) associated with hazardous events (Fig. 3f), and synthesis of 

fault trees (Fig. 3g), with the support of xSAP [31] tool. The 100% CHESSML analy-

sis context models, components and state machines are inputs for executing CHESS 

state-based analysis and xSAP for synthesizing fault trees for each product-specific 

hazard. The outputs of this activity are: state-based analysis results that provide met-

rics associated with hazardous events, fault trees for each identified hazardous event, 

and a FMEA table. The fault trees are further synthesized into FMEA that describe 

how component can fail and contributing to the occurrence of hazardous events. 

State-based analysis results support risk assessment, the assignment of Safety Integri-

ty levels (SILs) to mitigate hazard effects, and derivation of safety goals. Fault trees 

and FMEA are required by standards for certifying a safety-critical system.  

5 Evaluation 

We evaluated our approach in an automotive Hybrid Braking System (HBS) [33]. The 

complete HBS models described through this section are available in [34]. 
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5.1 Hybrid Braking System 

The HBS is an automotive wheel braking system (Fig. 4), originally designed in 

MATLAB/Simulink. The term hybrid means that the braking occurs through the 

combined action of electrical In-Wheel Motors (IWMs), and frictional Electrome-

chanical Brakes (EMBs) within Brake Units (BUs). While braking, IWM components 

transform the vehicle kinetic energy into electricity, charging the power train battery, 

increasing the vehicle’s range. The HBS architecture comprises 4 variant wheel-brake 

units (subsystems), 30 components with 69 connections. Each wheel brake module 

comprises a Wheel Node Controller (WNC), for calculating the amount of braking 

torque to be produced by each wheel braking actuator, and it sends commands to 

Electromechanical Braking (EMB) and IWM power converters that control EMB and 

IWM braking actuators. While braking, the electric power flows from the Auxiliary 

Battery to the EMB via EMB Power Converter; and IWM acts as a power generator 

providing energy for the Powertrain Battery via IWM Power Converter. 

The HBS was evolved into a product line. We re-designed the HBS using CHESS-

ML to support the evaluation of State-based DEPendable-SPL approach. The wheel 

braking is the HBS architectural variation point (see Fig. 3a). We can combine the 

four wheel-brake units into different ways to derive different variants. In this paper, 

we considered two HBS product variants: four-wheel braking (FourWB) and front-

wheel braking (FWB). The front-wheel brake units and their connections to other 

components (Fig. 4) represent the realization of the FWB product. The HBS product 

variants can be deployed in a road car or in a military vehicle. Different hazards with 

different risks can rise from interactions between components in each HBS variant 

and operating environment, thus, impacting on safety analysis. 

 

 

Fig. 4. An excerpt of hybrid braking system product line architecture [35]. 

5.2 HBS: Domain Engineering Phase 

Identification of Feature Interactions for Braking System Safety Analysis: From 

the analysis of HBS system and safety-related features (Fig. 3a), we identified and 

considered the following feature interactions during domain safety analysis: FI1 - 

Front Wheel Braking deployed in a Road car vehicle (FWB and Road), and FI2 - 
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Four Wheel Braking deployed in a Military vehicle (FourWB and Military). HBS: 

Hazard Analysis and Risk Assessment. We performed this step from the analysis of 

the HBS architecture model (Fig. 4) considering FI1 and FI2 feature interactions. We 

identified four potential hazards (Table 1) that may rise in two particular feature inter-

actions. During HBS hazard analysis we specified a 150% CHESS analysis context 

model with four «StateBasedAnalysis» components that provide the context for esti-

mating the probability of occurrence, exposure and controllability of omission and 

value failure modes in both feature interactions. We also specified four «GaAnaly-

sisContext» components that define the contexts for fault tree analysis. 

Table 1. Wheel braking hazards. 

Feature Interaction Hazard Sev. Exp. Contr. ASIL 

FourWB + Military No braking four wheels. S3 0.6% (E2) C2 A 

Value braking S3 14.9% (E4) C2 C 

FWB + Road Value braking S3 0.6% (E2) C3 B 

No braking front S3 0.7% (E2) C3 B 

HBS Component Fault Modeling: In our evaluation, we specified the failure be-

havior of 10 components, considering FI1 and FI2 feature interactions, into 10 state-

machines. Fig. 3b shows an excerpt of the 150% CHESS error state machine diagram 

that describes the failure behavior of Communication Bus component in front-wheel 

(FI1) and four-wheel (FI2) braking feature interactions. The probability of occurrence 

of a random failure in this component when connected to front wheel brake units is 

1.0E-6 per hour of operation. The Communication Bus components may also fail 

through the propagation of external faults through its input ports, raising either an 

omission and/or wrong value failures. Variation in state machines may impact on how 

hazards propagate throughout architectural components during fault tree analysis, and 

in the probability of occurrence of hazardous events, changing safety requirements. 

Mapping HBS Variability Abstractions to CHESS-ML Models and State-

Machines: We performed this step from the analysis of the HBS feature model, the 

identified feature interactions, CHESS-ML models and state-machine diagrams. The 

HBS VRealization model contains eight fragment substitutions: four to manage varia-

tion on CHESS-ML models, two for state machine diagrams, and two to manage vari-

ations on CHESS analysis context model. Fig. 3c show an excerpt of the VRealization 

model with the CBusTwoBUFS fragment substitution with a placement referencing a 

state transition from the 150% Bus state machine (Fig. 3b). The highlighted state tran-

sition should be removed from this state-machine when FourWB (Fig. 3b) is chosen. 

5.3 HBS: Application Engineering Phase 

Braking System Requirements: In this step, we specified the features that address 

FourWB and FWB requirements into two resolution models. Fig. 3d shows an excerpt 

of the FourWB resolution model, where the FourWB feature was chosen. HBS Vari-

ability Resolution: We input the following artefacts to BVR execution engine: 

FourWB and FWB resolution models, the superset CHESS-ML models and state 

machine diagrams. Firstly, we executed the BVR engine for deriving 100% CHESS-
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ML models for FWB system variant, followed by FourWB (Fig. 3d). Product State- 

Based Analysis and Fault Trees Synthesis: After product derivation, we performed-

state-based analysis, via execution of CHESS-SBA, to estimate the severity, probabil-

ity of exposure and controllability of omission and value hazardous events in FWB 

and FourWB system variants.  Table 1 illustrates the state-based analysis results for 

the FWB and FourWB hazards. The results demonstrated that all the identified wheel 

braking hazards have the potential to produce life threatening injuries to the occupants 

(S3 severity). With respect to probability of exposure, the probability of occurrence of 

value braking and no braking hazards in the FWB system variant is lower (E2). We 

identified the probability of exposure to a value braking hazard is very high (E4) in 

the FourWB variant. Finally, we estimated the controllability of the driver in hazard-

ous driven situations based on qualitative attributes and fault tree analysis. From the 

analysis of the values assigned to severity, probability of exposure and controllability, 

we classified the risk posed by each hazard by checking the corresponding ASIL in 

the risk matrix. The occurrence of no braking hazard is most critical in FWB system 

variant demanding ASIL B safety goals. On the other hand, ASIL A is sufficient to 

mitigate the hazard effects in the FourWB. This example demonstrates the impact of 

variability in the design and operating environment on hazard analysis and risk as-

sessment, derivation of safety goals/requirements. Such variation further propagates 

throughout fault tree analysis. Due to space limitations, the synthesized fault trees 

describing the propagation of no braking hazard throughout FourWB and FWB sys-

tem variants are available elsewhere [34]. 

6 Conclusions 

Model-based design and safety assessment become increasingly common in industry 

and safety standards from different domains, e.g., automotive, avionics, start to adopt 

them. Model-based languages like CHESSML [20], EAST-ADL [36], and AADL 

[18] have extensions, annexes, and metamodels that integrate safety concepts into 

model-based design. These developments are encouraging in terms of adaptation and 

adoption of the concepts of variant management and reuse in system safety assurance 

processes proposed in this paper. There are other powerful tools for Model-Based 

Safety Assessment (MBSA) including ALTARICA [37] [38], FSAP/xSAP [39] [31], 

and HiP-HOPS [24]. It is beyond the scope of this paper to discuss the relation of our 

work to these approaches. Our approach is generally complementary to other work in 

MBSA, and, some of the concepts we propose for MBSA of product lines could in-

spire other approaches. We introduced the State-Based DEPendable-SPL approach to 

support variability modeling and management in safety analysis using state-machine 

diagrams. The difference from our approach in comparison with related work 

[5][7][10][13] is the focus on establishing a clear distinction between reusable safety 

assets, i.e., state-based and failure logic models, from those that can be generated, 

e.g., FTAs. Our approach supports mapping variability abstractions to elements from 

state-machine diagrams in the domain engineering phase, and it enables the systemat-

ic reuse of these models, the execution of state-based analysis, and synthesis of fault 
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trees in the application engineering phase. The main benefits of our approach for safe-

ty assurance reuse are: i) the improvement of the verification product line safety prop-

erties across different scenarios; ii) the traceability between variability abstractions, 

and error states and transitions from state-machine diagrams; and iii) variability reso-

lution in error states and transitions; and iv) the reduction of the burden of safety 

analysis for certifying individual system variants since this task is not performed from 

scratch. It may contribute to reducing the effort to perform hazard analysis and risk 

assessment, fault tree analysis, and FMEA required by standards like ISO 26262 for 

certifying a specific system variant. Our approach is applicable to other standards and 

domains (e.g., avionics) to enable safety assets reuse through certification processes.  

In our experience, we achieved between 65-80% of reuse in state machine dia-

grams in the FourWB and FWB variants respectively. Our approach also contributed 

to reduce the effort on extending the SPL with newer components and state-machine 

diagrams via specification of newer features and fragment substitutions. Also, the 

State-Based DEPendable-SPL automates the traceability between variability abstrac-

tions (VSpec features) and safety analysis artefacts. As future work, we plan to extend 

our approach to support the management of the diversity of dependability information 

in safety and cyber-security assessment, and runtime variability in assurance cases. 

We also intend to assess the effectiveness of our approach in more complex industrial 

product lines from autonomous systems and other safety-critical domains.  
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